PERENCANAAN KOLAM RETENSI DALAM PENANGANAN BANJIR DI KABUPATEN PASURUAN JAWA TIMUR

Christian Pradhana Putra¹, I Wayan Mundra², Erni Yulianti

1) Mahasiswa Program Studi Teknik Sipil ITN Malang ²⁾³⁾ Dosen Program Studi Teknik Sipil ITN Malang Email: christianputra123@gmail.com

ABSTRACT

Water is the main need that cannot be separated from human life. Whether in terms of consumption, daily needs, irrigation, to energy generation needs. Over time, the increase in population, the widening of transportation facilities and industrial estates that are increasing have resulted in the decreasing number of green open land in various regions. As a result, it caused several impacts, such as floods that occurred in various regions in Indonesia, especially in Pasuruan Regency. According to BPS data from Pasuruan Regency in 2020, the total population is 1,627,400 people, 6,379 households. Some of them were affected by floods caused by the overflow of the Welang River. Welang River has the largest catchment area, which is 499.5 km2, and has a river length of 31.2 km and a maximum width of 21 m. Therefore, it is necessary to develop infrastructure in the form of a Retarding Basin or Retention Pond, which is an alternative to flood control in the Welang River watershed. By using a flood control building, namely the Retention Pond, flooding in the Welang River watershed in Pasuruan Regency was reduced to 94.92%.

Keywords: Flooding, Flood Control, Retention Ponds

ABSTRAK

Air merupakan kebutuhan utama yang tidak bisa dipisahkan dari kehidupan manusia. Entah dalam segi konsumsi, kebutuhan sehari-hari, irigasi, hingga kebutuhan pembangkit energi. Seiring berjalannya waktu, pertambahan jumlah penduduk, pelebaran sarana transportasi dan kawasan industri yang kian meningkat mengakibatakan semakin berkurangnya lahan terbuka hijau di berbagai daerah. Akibatnya menimbulkan beberapa dampak, seperti banjir yang terjadi diberbagai daerah di Indonesia, terkhusus di Kabupaten Pasuruan. Menurut data BPS Kabupaten Pasuruan tahun 2020, total jumlah penduduk 1.627.400 jiwa, 6.379 kepala keluarga. Sebagian diantaranya terdampak banjir yang diakibatkan oleh meluapnya Sungai Welang. Sungai Welang memiliki catchmen area terbesar, yaitu 499.5 km², dan memiliki panjang sungai 31.2 km serta lebar maksimal 21 m. Oleh karena itu perlu dilakukan pembangunan infrastruktur berupa Retarding Basin atau Kolam Retensi, yang merupakan alternatif pengendali banjir pada DAS Sungai Welang. Dengan menggunakan bangunan pengendali banjir yaitu Kolam Retensi, banjir di DAS Sungai Welang Kabupaten Pasuruan berkurang menjadi 94.92%.

Kata kunci:Banjir, Pengendali Banjir, Kolam Retensi

PENDAHULUAN

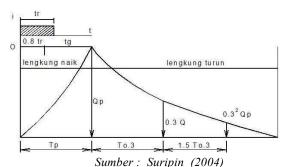
Air merupakan kebutuhan utama yang tidak bisa dipisahkan dari kehidupan manusia. Entah dalam segi konsumsi, kebutuhan sehari-hari, irigasi, hingga kebutuhan pembangkit energi. Seiring berjalannya waktu, pertambahan jumlah penduduk, pelebaran sarana transportasi dan kawasan industri yang kian meningkat mengakibatakan semakin berkurangnya lahan terbuka hijau di berbagai daerah. Akibatnya menimbulkan beberapa dampak, seperti banjir yang terjadi diberbagai daerah di Indonesia, terkhusus di Kabupaten Pasuruan. Menurut data BPS Kabupaten Pasuruan tahun 2020, total jumlah penduduk

1.627.400 jiwa, 6.379 kepala keluarga. Sebagian diantaranya terdampak banjir yang diakibatkan oleh meluapnya Sungai Welang. Sungai Welang memiliki catchmen area terbesar, yaitu 499.5 km², dan memiliki panjang sungai 31.2 km serta lebar maksimal 21 m. Oleh karena itu perlu dilakukan pembangunan infrastruktur berupa Retarding Basin atau Kolam Retensi, yang merupakan alternatif pengendali banjir pada DAS Sungai Welang. Kolam Retensi yang akan direncanakan berada pada daerah tengah aliran (middlestream) pada suatu aliran sungai. Terdapat bendung eksisting yang akan digandakan funsinya, selain menaikkan muka air menuju saluran irigasi, juga akan membagi debit banjir menuju kolam retensi. Proses Input dan Output nya menggunakan sistem pintu air, sehingga menjaga debit air dalam kolam tetap sesuai batas muka air yang direncanakan. Kemudian debit banjir akan dialir kan menuju kolam retensi menggunakan Inlet rencana. Debit air pada kolam retensi akan dikembalikan menuju sungai apabila debit banjir sudah surut.

LANDASAN TEORI

Debit banjir Rencana

Besar debit rencana yang mungkin terjadi dapat direncanakan dengan menghitung tinggi hujan rencana dulu. Dimulai dari perhitungan hujan harian maksimum menghasilkan hujan rencana dalam periode tertentu. Selanjutnya tinggi hujan rencana digunakan untuk menghitung debit rencana dengan periode ulang sesuai dengan perhitungan hujan rencana. Debit banjir rencana adalah debit terbesar yang mungkin terjadi pada periode ulang yang telah direncanakan. Metode yang digunakan adalah medote HSS Nakayasu, adapun persamaan HSS Nakayasu sebagai berikut.


$$Qp = (\frac{AR_0}{3.6(0.3T_p + T_{0.3})})$$

Dimana:

Q_p = debit puncak banjir (m³/detik) R_o = curah hujan satuan (1 mm)

T_p = tenggang waktu (time long) dari permulaan hujan sampai puncak banjir (jam) T_{0.3} = waktu yang diperlukan untuk penurunan debit, dari debit puncak sampai menjadi 30% dari debit puncak (jam)

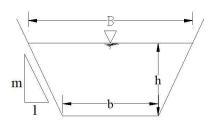
A = luas daerah aliran (km^2)

Persamaan untuk Hidrograf Satuan Sintetik Nakayasu:

$$\begin{array}{ll} T_p & = tg + 0 \\ T_{0.3} & = \alpha \ . \ tg \end{array}$$

tg dihitung berdasarkan rumus:

 $\begin{array}{ll} tg & = 0.21.L^{0.7} \mbox{ untuk } L \mbox{ untuk } L > 15 \mbox{ km} \\ tg & = 0.40 + 0.058. \mbox{ L untuk } L > 15 \mbox{ km} \end{array}$


tr = lama hujan efektif yang besarnya 0.5 tg sampai tg

Perencanaan Kolam Retensi

Kolam retensi adalah suatu bangunan/konstruksi yang berfungsi untuk menampung air hujan sementara waktu dengan memberikan kesempatan untuk dapat meresap ke dalam tanah yang operasionalnya dapat dikombinasikan dengan pintu air, selanjutnya dilepas kembali ke sungai, (Perpustakaan Kementrian PU). Fungsi dari kolam retensi adalah untuk menggatikan peran lahan yang semula umtuk sedapan, namun dijadikan lahan tertutup/perumahan/perkantoran, maka fungsi resapan dapat digantikan dengan kolam retensi.

Dimensi Saluran

Hidrolika saluran dibutuhkan untuk mengetahui kapasitas saluran rencana. Sehingga diketahui debit maksimum yang dapat ditampung oleh setiap penampang, sepanjang saluran. Kapasitas saluran ini digunakan sebagai acuan untuk perencanaan saluran agar mampu menampung debit tanpa luapan air.

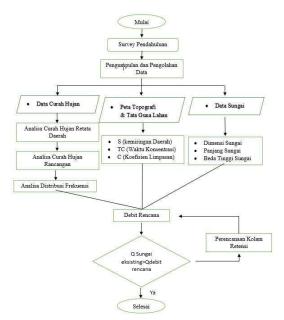
- Luas (A) $= bh + mh^2$
- Keliling basah $(P) = b + 2h\sqrt{1 + m^2}$
- Jari-jari Hidrolik (R) $= \frac{(b+zy).y}{b+2.y\sqrt{1+z^2}}$

- Lebar Puncak (B) = b + 2mh
- Kedalaman Hidrolik (D)= $\frac{A}{B}$
- $V = \frac{1}{n} \times R^{\frac{2}{3}} \times S^{\frac{1}{2}}$
- $Q = A \times V$

Pintu Air

Pintu air berfungsi sebagai pengatur aliran air untuk pembuangan air, penyadapan dan pengatur lalu lintas air. Pintu air sebagai pembuangan di saluran drainase biasanya dibiarkan terbuka dan akan ditutup ketika elevasi sungai induk lebih tinggi dari elevasi saluran pembuang. Sedangkan sebagai pengatur lalu lintas air, maka pintu air selalu dibuka dan ditutup secara periodic.

Dinding Penahan


Dinding penahan tanah adalah suatu bangunan yang dirancang dan direncanakan dengan tujuan sebaga konstruksi penahan gaya tekanan aktif lateral dar tanah. Oleh karena itu dinding penahan haru diperhitungkan agar aman dari gaya-gaya yan menyebabkan keruntuhan. Maka dari itu aka diperhitungkan faktor keamanan dan stabilita konstruksi dinding penahan tersebut, antara lain.

- 1. Tekanan tanah aktif
- 2. Kontrol stabilitas guling dan geser
- 3. Kontrol eksentrisitas
- 4. Daya dukung tanah

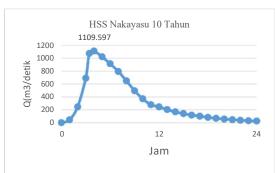
METODOLOGI PENELITIAN

Diagram Alir

Dalam tugas akhir yang dikerjakan, dilakukan perencanaan kolam retensi pada middle stream sunga welang. Perencanaan dimulai dari survey pendahulua hingga pengolahan data dapat dilihat pada diagram ali dibawah ini.

ANALISA DAN PEMBAHASAN

Debit Banjir Rencana

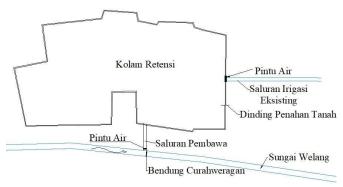

Perhitungan debit banjir rencana dilakukan dengan

metode HSS Nakayasu. Perhitungan dengan metode ini di pilih dikarenakan Perencana memerlukan waktu antara hujan sampai debit puncak banjir. Pada perhitungan debit banjir rencana, perencana menggunakan kala ulang banjir 10 tahun. Hal ini dipilih karena Kabupaten Pasuruan bukan merupakan daerah dengan tingkat kerawanan tinggi,

Luas Daerah Pengaliran Sungai: 388 km² Panjang Sungai : 26.04 km : 0.38 Koefisien pengaliran Parameter α : 2.188

Tabel Hidrograf Banjir Rancangan Metode HSS

Nakayasu Kala Ulang 10 Tahun									
i _{Jam} S ke		Akibat Hujan jam-jaman							
	Qt	R_1	R ₂	R ₃	R ₄	R ₅	R ₆		
g	(m ³ /dt)	41.651	10.826	7.594	6.046	5.105	4.463	(m ³ /d	
n 0	0	0						0	
s 1	1.067	44.452	0					44.45	
2	5.633	234.621	11.554	0				246.1	
3	14.906	620.850	60.983	8.105	0			689.9	
3.44	20.702	862.255	161.372	42.777	6.453	0		1072.8	
4	17.593	732.777	224.119	113.196	34.057	5.448	0	1109.5	
5	13.190	549.382	190.465	157.210	90.122	28.757	4.763	1020.€	
6	9.889	411.886	142.796	133.603	125.164	76.095	25.140	914.6	
7	7.414	308.802	107.058	100.166	106.369	105.683	66.525	794.6	
8	5.558	231.517	80.264	75.097	79.748	89.814	92.393	648.8	
9	4.167	173.574	60.176	56.302	59.789	67.336	78.519	495.6	
10	3.124	130.133	45.116	42.211	44.825	50.483	58.868	371.6	
n 11	2.342	97.564	33.824	31.647	33.607	37.849	44.135	278.6	
1 12	2.675	111.405	25.359	23.726	25.196	28.376	33.089	247.1	
n ₁₃	2.207	91.940	28.957	17.788	18.890	21.274	24.808	203.6	
r ₁₄	1.822	75.877	23.897	20.312	14.162	15.950	18.599	168.7	
15	1.503	62.620	19.722	16.763	16.171	11.958	13.944	141.1	
16	1.241	51.679	16.276	13.834	13.346	13.654	10.454	119.2	
17	1.024	42.649	13.432	11.417	11.014	11.269	11.937	101.7	
18	0.845	35.198	11.086	9.422	9.090	9.300	9.852	83.94	
19	0.697	29.048	9.149	7.776	7.502	7.675	8.130	69.28	
20	0.576	23.973	7.550	6.417	6.191	6.334	6.710	57.17	
21	0.475	19.784	6.231	5.296	5.109	5.227	5.537	47.18	
22	0.392	16.328	5.142	4.371	4.217	4.314	4.570	38.94	
23	0.324	13.475	4.244	3.607	3.480	3.560	3.772	32.13	
24	0.267	11.121	3.502	2.977	2.872	2.938	3.113	26.52	



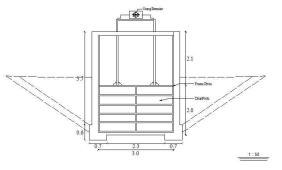
Gambar Hidrograf banjir Kala Ulang 10 Tahun

Gambaran Umum Perencanaan Kolam Retensi

Kolam Retensi menggunakan bendung yang sudah tersedia di badan sungai. Bendung Curahweragan, merupakan bendung yang semula digunakan untuk membagi debit dari sungai welang menuju saluran irigasi guna area persawahan yang ada, akan di gandakan fungsinya untuk membagi debit menuju Kolam Retensi juga. Walaupun fungsi bendung bertambah, diupayakan tidak mengganggu kinerja utama Bendung sebagai pembagi debit menuju saluran irigasi. Hal ini disiasati dengan peletakan pintu air pada inlet Kolam Retensi yang akan di buka saat debit banjir terjadi, kemudian air melalui saluran pembawa menuju Kolam Retensi. Kemudian Kolam Retensi akan menyimpan sementara debit banjir tersebut, kemudian saat muka air sungai sudah mulai surut yang berarti debit baniir telah berkurang, air akan di kembalikan menuju sungai melalui outlet yang ada. Lokasi outlet berada di saluran irigasi eksisting, sehingga tidak perlu dilakukan perencanaan saluran pembuang. Dinding penahan kolam retensi

menggunakan pasangan batu kali, karna dirasa paling efisien dan bahan baku banyak tersedia disekitar lokasi perencanaan.

Gambar Pengoprasian Kolam Retensi


Analisa Kolam Retensi

			Q sungai		Q	Volume	
T	ΔT	Qbanjir	max	Qrerata	Melimpas	Limpasan	
(Jam)	(detik)	(m³/det)	(m³/det)	(m³/detik)	(m³/det)	(m³)	
0	3600	0	308.207	22.226	0	0	
1	3000	44.45243	308.207	22.220	U		
2	3600	246.1755	308.207	468.057	159.850	575458	
3	3000	689.9376	308.207	400.037	137.830	373436	
3.44	1584	1072.857	308.207	1091.227	783.020	1240304	
4	1304	1109.597	308.207	1071.227	783.020	1240304	
5	3600	1020.698	308.207	967.691	659.484	2374144	
6	3000	914.6847	308.207	707.071		23/4144	
7	3600	794.6035	308.207	721.718	413.511	1488639	
8	3000	648.832	308.207	/21./10		1400039	
9	3600	495.696	308.207	433,666	125.459	451653	
10	3000	371.6364	308.207	733.000			
11	3600	278.6256	308.207	262.888	0.000	0	
12	3000	247.1513	308.207	202.000		U	
13	3600	203.6572	308.207	186.227	0.000	0	
14	3000	168.797	308.207	100.227	0.000	0	
15	3600	141.1781	308.207	130.211	0.000	0	
16	3000	119.2438	308.207	130.211	0.000	U	
17	3600	101.7192	308.207	92.833	0.000	0	
18	3000	83.94696	308.207	92.033	0.000		
19	3600	69.27984	308.207	63.228	0.000	0	
20	3000	57.17534	308.207	03.228		U	
21	3600	47.18572	308.207	43.064	0.000	0	
22	3000	38.94148	308.207	45.004	0.000		
23	3601	32.13767	308.207	29.330	0.000	0	
24	3001	26.52261	308.207	29.330	0.000		
			max Vol luapan			6.130.198.14	

Daya tampung maksimum $1.939.597 \times 3 = 5.818.791 \text{ m}^3$ Dapat mengurangi debit banjir sungai welang sebesar $6.130.198.14 - 5.818.791 = 311.407.14 \text{ m}^3$ Dengan presentase sebesar $\frac{5.818.719}{6.130.198.14} \times 100 = 94.92\%$

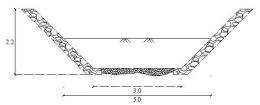
Pintu Air

Pintu air berfungsi sebagai pembagi debit menuju dan keluar dari kolam retensi, sehingga kolam retensi tidak sampai overtoping dan membahayakan struktur kolam retensi itu sendiri. Dengan tinggi daun pintu 2.0 meter, lebar pintu 3.0 meter.

Gambar Pintu Air

- Type pintu : Pintu Air Gearbox Double

Debit (Q) : $13.685 \text{ m}^3/\text{detik}$


- P(intake) : 3.00 m

b saluran : 3.00 m

hp (tinggi daun pintu air) : 2 m

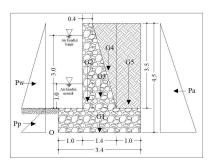
Saluran Rencana

Perencanaan saluran dimaksudkan untuk mengetahui kapasitas maksimum saluran menuju kolam retensi. Dengan kemiringan 1 : 2, B₁ 5 meter, dan B₂ 3 meter. Dengan detail perhitungan sebagai berikut.

Gambar Saluran Rencana

- Luas
$$A$$

 $A = bh + mh^2$
 $A = 3 \times 1 + 2 \times 1^2$
 $A = 5 \text{ m}^2$


Volume Inlet rencana V

$$V = \frac{1}{n} \times R^{2/3} \times S^{1/2}$$

 $V = \frac{1}{0.25} \times 0.669^{2/3} \times 0.008^{1/2}$
 $V = 2.737$

Debit rencana
$$Q$$

 $Q = A \times V$
 $Q = 5 \times 2.737$
 $Q = 13.685 \text{ m}^3/\text{detik}$

Analisa Stabilitas Dinding Penahan Kolam Retensi

Dinding penahan tanah berfungsi untuk menjaga struktur tanah pada kolam retensi agar tidak terjadi keruntuhan, baik guling, geser maupun daya dukung tanah itu sendiri. Berikut merupakan perhitungan stabilitas dinding penahan tanah (DPT).

Gaya	V (t)	H (t)	Jarak (m)	Mw (tm)	Mh banjir (tm)	Mh normal (tm)
G1	7.480		1.700	12.716		
G2	3.080		1.200	3.696		
G3	3.850		2.067	7.957		
G4	2.730		1.700	4.641		
G5	5.460		2.900	15.834		
Pa		9.300	1.500		13.950	13.950
Pp		1.325	0.333		0.442	0.442
Pw banjir	4.500	4.500	2.000	20.250	9.000	
Pw normal	0.500	0.500	1.333	0.250		0.667
Jumlah	27.100	15.125		65.094	23.392	15.058

Sehingga didapat SF Guling sebesar.

$$Sg = \frac{\sum Mw}{\sum Mgl}$$

$$= \frac{65.064}{13.474}$$

$$= 4.831 \ge 1.5 \text{ (Aman terhadap stabilitas guling)}$$

Kontrol Stabilitas Geser

Faktor keamanan terhadap geser (Fs sliding) dapat dihitung dengan persamaan

$$F_{gs} = \frac{\Sigma Rh}{\Sigma Fh} \ge 1.5$$

Tahanan geser dinding sepanjang B = 3.4 m dihitung dengan menganggap dasar dinding sangat kasar sehingga sudut geser $\delta_b = \frac{2}{3}$. Ø dan adhesi c

$$\delta_{b} = \frac{2}{3} \times 15$$

$$= 10$$

$$c = 10 \text{ ton/m}^{2}$$

Dengan

$$\Sigma Rh = c. B + W tg\delta$$

ΣPh = jumlah gaya-gaya horizontal

$$\begin{split} F_{gs} &= \frac{\Sigma Rh}{\Sigma Fh} \\ &= \frac{c.B + W \, tg\delta}{\Sigma Ph} \\ &= \frac{10 \cdot 3.4 + 27.100 \, tg \, 10}{8.983} \\ &= \frac{39.440}{8.983} \\ &= 4.391 \geq 1.5 \; \text{(aman terhadap stabilitas Geser)} \end{split}$$

Kontrol Eksentrisitas

$$X = (Mw - Mh)/V$$

$$= (65.094 - 23.392)/27.100$$

$$= 1.539 m$$

$$e = (B/2) - x$$

$$= (3.4/2) - 1.539$$

$$= 0.161 m$$

1/6 = B/6= 3.4/6 = 0.57m e = B/6 = 0.161 < 0.57 (aman terhadap tegangan tekan)

PENUTUP

KESIMPULAN

Berdasarkan hasil analisa perencanaan Kolam Retensi dalam penanganan banjir di Kabupaten Pasuruan, Jawa Timur. Diperoleh kesimpulan sebagai berikut:

- 1. Dari hasil analisa didapat debit banjir rencana dari kala ulang 10 tahun, yaitu 1109.597 m3/detik. Sedangkan Sungai Welang hanya mampu menampung debit sebesar 309.206 m3/detik. Maka perlu dilakukan Pembangununan Kolam Retensi sebagai alternatife pengendali banjir.
- 2. Sedangkan hasil analisa perencanaan pendimensian kolam retensi, didapat kolam retensi dapat menampung volume limpasan maksimum sebesar 5.818.791 m3. Dengan luas area 1.939.597 m² dengan kedalaman 3 m. Untuk dimensi pintu air dengan dimensi lebar 3 m, tinggi bukaan pintu 1 m, dan tebal daun pintu sebesar 30 mm, akan di rencanakan menggunakan satu pintu air dengan tipe pintu air Gearbox Double. Saluran inflow direncanakan berbentuk trapesium dengan lebar atas 4 meter, lebar bawah 3 meter dan kedalaman 1 meter.
- 3. Volume debit banjir pada sungai eksisting sebelum direncanakan kolam retensi menggunakan metode HSS Nakayasu dengan kala ulang 10 tahun adalah 1109.597 m3/detik dengan volume limpasan mencapai 12.888.136.79 m3. Setelah dilakukan perencanaan Kolam Retensi, volume limpasan berkurang menjadi 7.069.345.97 m3 atau dapat mengurangi sebesar 45.148% limpasan debit banjir sungai welang.
- 4. Dinding penahan tanah direncanakan menggunakan pasangan batu kali. Dengan dimensi, tinggi(H) = 4.5 meter,h = 3.5 meter, h' = 1 meter, A = 1 meter, b = 1,4 meter, a = 1 meter, Lebar Bawah (B) = 3.4 meter, lebar atas = 0.4 meter.

VI. SARAN

Saran yang dapat diberikan dalam perencanaan kolam retensi adalah Perlunya dilakukan pengawasan pada saat curah hujan tinggi guna membuka atau menutup pintu air, sehingga fungsi kolam retensi sebagai pembagi debit dapat bekerja secara maksimal. Dan juga perlunya ditambahkan *Trash trap* pada inlet, guna menghindari sampah atau kotoran masuk ke dalam kolam retensi dan mengkibatkan pendangkalan. Diperlukan lebih dari 1 kolam retensi untuk menanggulangi banjir di Kabupaten Pasuruan, dikarenakan kolam retensi yang direncanakan hanya mampu menampung 45.148% dari debit banjir dengan

kala ulang 10 tahun yang direncanakan. Serta perlu dilakukan perawatan rutin pada badan sungai, karena salah satu penyebab banjir dikabupaten pasuruan, selain curah hujan yang tinggi, pendangkalan sungai akibat sedimen yang terbawa arus juga cukup besar.

DAFTAR PUSTAKA

- Anonymous (2012). Buku Jilid IA Tata Cara
 Penyusunan Rencana Induk Sistem Drainase
 Perkotaan. Jakarta: Direktorat
 Pengembangan Penyehatan Lingkungan
 Pemukiman Direktorat Jenderal Cipta Karya
 Kementerian Pekerjaan umum.
- Baskoro, B. A. Tugas Akhir: Perencanaan Kolam Retensi Sebagai Usaha Mereduksi Banjir Sungai Citarum Hulu, Kabupaten Bandung. Universitas Brawijaya.
- BPS Kabupaten Pasuruan. (2020). *Kabupaten Pasuruan Dalam Angka*. Pasuruan: BPS Kabupaten Pasuruan.
- Florince. (2015). Tugas Akhir: Studi Kolam Retensi Sebagai Upaya Pengendali Banjir Sungai Way Simpur Kelurahan Palapa Kecamatan Tanjung Karang Pusat. Universitas Lampung.
- Hardinata, D. (2019). Tugas Akhir: Analisa Daya
 Tampung Kolam Retensi 10 Ilir untuk
 Pengendali Banjir SUB DAS Bendungan
 Kota Palembang. Universitas
 Muhammadiyah Palembang
- Harmani, E., & Soemantoro, M. (2015). *Tugas Akhir:* Kolam Retensi Sebagai Alternatif Pengendali Banjir. Universitas Dr. Soetomo Surabaya.
- Kuniafi, A. A. (n.d.). Kolam Retensi (Retarding Basin)

 Sebagai Alternatif Pengendali Banjir Dan
 Roh
- Larasati. M, F. E. (2014). Tugas Akhir: Pengendali Banjir Sungai Code Dengan Kolam Retensi Dan Pintu Air Otomatis. Universitas Atma jayaYogyakarta.
- Pramono, D. (2015). Tugas Akhir: Perencanaan Kolam Retensi Sebagail Usaha Mereduksil Debit Banjir (Studi Kasus: Kecamatan Medan Selayang Kelurahan Asam Kumbang). Medan: Universitas Sumatra Utara.
- Prakoso, A, B. (2017). Tugas Akhir: Perencanaan Kolam Retensi Untuk Penanggulangan Banjir Di Kecamatan Tembalang. Universitas Semarang
- Qariatullailiyah, (2015). Tugas Akhir : Analisa Pengaruh Tampungan Terhadap Pengendalian Banjir Dan Penyediaan Air Baku Pada Daerah Aliran Sungai (DAS) Kemunig - Sampang. ITS
- Rahmatullah, A. (2018). Tugas Akhir: Perencanaan Kolam Retensi di Sungai Klasuluk

- Universitas Kabupaten Sorong. Muhammadiyah Sorong
- Shofiyullah, A., & Pradana, S. A. (2016). Tugas Akhir : Perencanaan (Desain) Kolam Retensi Daerah Aliran Sungai Tenggang. Unissula.
- Sumarto, C. D. (1987). Hidrologi Teknik. Surabaya: Usaha Naasional.
- Suripin (2004). Sistem Drainase Perkotaan Yang Berkelanjutan. Yogyakarta. Andi
- Subramanya, K. (2009). Flow in Open Channels. New Delhi: Tata McGraw-Hill Publishing Company Limited.