KLASIFIKASI KUALITAS KAYU DENGAN METODE K-NEAREST NEIGHBORS (KNN) BERBASIS WEBSITE

Ali Ridho, Ahmad Fahrudi Setiawan, Nurlaily Vendyansyah

Teknik Informatika, Institut Teknologi Nasional Malang Jalan Raya Karanglo km 2 Malang, Indonesia Alibinjindan440@gmail.com

ABSTRAK

Penelitian ini berfokus pada peningkatan objektivitas dan konsistensi dalam proses klasifikasi kualitas kayu di PT. Indofurnitama Raya dengan menerapkan metode K-Nearest Neighbors (KNN). Saat ini, perusahaan masih mengandalkan penilaian subjektif dari teknisi, yang dapat menyebabkan inkonsistensi dalam penentuan kualitas kayu. Metode KNN diterapkan untuk mengklasifikasikan kayu ke dalam tiga kategori, yaitu Grade A, B, dan C, berdasarkan atribut seperti kelembapan, kepadatan, dan kekuatan, dengan menggunakan perhitungan jarak Euclidean. Website berbasis Laravel dibangun untuk memfasilitasi proses ini, dengan dua jenis pengguna, yaitu admin dan pegawai, yang memiliki peran dan fungsi berbeda dalam pengelolaan data kayu dan hasil klasifikasi. Hasil pengujian menunjukkan bahwa metode KNN berhasil diterapkan dengan baik, dan seluruh fitur website, termasuk pengelolaan data dan hasil klasifikasi, berfungsi dengan optimal, memberikan solusi praktis dan efisien untuk meningkatkan objektivitas dalam klasifikasi kualitas kayu di perusahaan, dari pengujian metode KNN yang diterapkan dapat disimpulkan bahwa untuk akurasi k = 53 pada kayu merbau sebesar 62,26% untuk nilai keakuratannya, sedangkan untuk kayu mahoni tingkat keakuratannya menurun sekitar 50,94%, untuk kayu jati tingkat keakuratannya lebih tinggi sedikit, sekitar 56,60%. Admin PT. Indofurnitama Raya menilai tampilan website menarik dengan skor 95,24%. Dari enam responden pegawai, lima merasa nyaman dengan tampilan website, sementara satu menilai cukup, menghasilkan kepuasan 94,44%. Meski akurasi program belum sempurna, tampilan dan fungsi website secara keseluruhan dinilai positif oleh pengguna.

Kata kunci: Klasifikasi Kualitas Kayu, K-Nearest Neighbors (KNN), Furnitur kayu

1. PENDAHULUAN

Indonesia merupakan salah satu produsen produk yang terbuat dari kayu. Kayu-kayu tersebut tidak semuanya memiliki nilai jual. Kayu jati merupakan salah satu kayu yang memiliki nilai jual yang tinggi, skala baik nasional maupun internasional. Pengelompokkan jenis kayu pada PT.Indofurnitama Raya menggunakan beberapa parameter yaitu kelembapan, kepadatan dan kekuatan. Pengelompokkan jenis kayu pada PT.Indofurnitama Raya memiliki subjektifitas yaitu ketergantungan dari mata manusia (ahli/pakar) [1]. Permasalahan muncul ketika penentuan kualitas kayu yang di putuskan oleh pakar, seperti inkonsistensi dan ketidak jujuran pakar. Oleh karena itu diterapkanlah teknologi untuk membantu dalam menganalisis suatu tekstur kayu agar bisa diklasifikasikan ke dalam kelompok-kelompok tertentu..

Dalam industri kayu, proses klasifikasi kayu masih bergantung pada keputusan manusia, yang dapat menimbulkan ketidakpastian dalam menentukan grade kayu. Proses ini sering kali melibatkan penilaian subjektif dari individu tertentu, yang dapat mengarah pada perbedaan hasil yang signifikan. Terlebih lagi, dalam konteks perusahaan seperti PT. Indofurnitama Raya, untuk sistem klasifikasi kayu belum terotomatisasi, keberadaan sistem yang dapat memberikan penilaian objektif dan konsisten terhadap kualitas kayu menjadi suatu kebutuhan yang mendesak. Dalam rangka memenuhi kebutuhan tersebut, dalam teknologi informasi komunikasi dapat

digunakan dengan metode Klasifikasi. Ada banyak metode klasifikasi yang dapat dikembangkan. Dalam penelitian ini, penulis mengembangkan sebuah website untuk klasifikasi kayu menggunakan metode K-Nearest Neighbors (KNN) dengan 3 jenis kayu yaitu jati, mahoni dan merbau. Metode ini memungkinkan identifikasi grade kayu berdasarkan atribut-atributnya dan menentukan grade tersebut berdasarkan tetangga terdekat dari beberapa sampel kayu. Dengan demikian, implementasi sistem ini di PT. Indofurnitama Raya akan membantu meningkatkan Objektifitas dalam proses klasifikasi kayu, serta memberikan pemahaman yang lebih baik terkait dengan kualitas kayu yang tersedia [1].

Penggunaan metode KNN dalam klasifikasi kayu di PT. Indofurnitama Raya menawarkan solusi yang praktis dan efisien untuk mengatasi masalah subjektivitas dan inkonsistensi dalam penentuan kualitas kayu. Dengan kemampuan KNN untuk mengklasifikasikan data berdasarkan kemiripan atribut-atributnya, perusahaan dapat meningkatkan objektivitas dan konsistensi dalam proses klasifikasi kayu, serta memberikan pemahaman yang lebih baik terkait dengan kualitas kayu yang tersedia. Oleh karena itu, penulis menggagas klasifikasi kualitas kayu dengan metode K-Nearest Neighbors berbasis website.

2. TINJAUAN PUSTAKA

2.1. Penelitian Terdahulu

Menurut Permana Putra dkk. dalam penelitiannya yang berjudul "Analisis Metode K- Nearest Neighbour (KNN) dalam Klasifikasi Data Iris Bunga" bertujuan untuk menganalisis penggunaan metode k-nearest neighbor (K-NN) dalam klasifikasi data iris bunga. Penelitian ini menggunakan 135 data iris bunga dari UCI machine learning repository dengan 4 karakteristik yaitu sepal length, sepal width, petal length, dan petal width. Pengujian dilakukan dengan variasi nilai K dari 3 sampai 9. Hasil penelitian menunjukkan metode K-NN memiliki persentase akurasi yang sangat baik mencapai 100% dalam klasifikasi data iris bunga ketika menggunakan data random [2].

Penelitian oleh Paramita, dkk (2019) dengan judul "Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan KNearest Neighbor" Pada penelitian ini peneliti menggunakan metode K-Nearest Neighbor dengan hasil klasifikasi jeruk nipis dari tingkat kematangannya menggunakan fitur warna k yakni k=3, dengan mengunakan k=7 dan k=3 pada pencarian jarak Euclidean distance yang menghasilkan akurasi sebesar 92% [3].

Penelitian menurut Admojo dan Ahsanawati dalam penelitiannya yang berjudul "Klasifikasi Aroma Alkohol Menggunakan Metode KNN" bertujuan untuk mengklasifikasikan jenis senyawa alkohol berdasarkan aromanya menggunakan metode K-Nearest Neighbor (KNN). Penelitian ini berhasil melakukan klasifikasi dengan akurasi rata-rata 95.8% untuk k=3 dan 96.4% untuk k=4. Penelitian ini juga menerapkan teknik cross-validation dengan k-fold=5 untuk mengevaluasi performa model [4].

Penelitian menurut Nur Ajijah dkk. dalam penelitiannya yang berjudul "Klasifikasi Teks Mining Terhadap Analisa Isu Kegiatan Tenaga Lapangan Menggunakan Algoritma K-Nearest Neighbor (KNN)" bertujuan untuk menganalisis isu-isu yang tersebar di lapangan mengenai pelayanan produk dan jasa PT XYZ menggunakan klasifikasi teks. Penelitian ini menerapkan metodologi CRISP-DM dan algoritma KNN, menghasilkan tingkat akurasi sebesar 93.88% dengan menggunakan 2.500 data. Nilai recall tertinggi diperoleh oleh klasifikasi harga sebesar 96.91%, sedangkan nilai presisi tertinggi diperoleh oleh klasifikasi pembayaran sebesar 98.67% [5].

2.2. Metode K-Nearest Neighbor

KNN adalah metode klasifikasi berdasarkan fakta bahwa objek yang 'dekat' satu sama lain juga akan memiliki karakteristik yang serupa [6]. Algoritma KNN relatif sederhana dan mudah dipahami sehingga cukup umum digunakan [7]. Algoritma KNN memiliki prinsip kerja mencari jarak terdekat antara data yang akan dievaluasi dan (k) tetangga (neighbor) terdekatnya dalam data latih. Kemudian data tersebut diklasifikasikan ke dalam kelas berdasarkan kategori (k) tetangga yang mayoritas. Penentuan sebuah variabel sangat berpengaruh terhadap hasil dan akurasi dari klasifikasi yang akan dilakukan [8].

Pada penggunaan metode KNN, hal yang pertama harus ditentukan banyaknya k tetangga terdekat yang digunakan untuk melakukan klasifikasi data baru. Banyaknya k, paling baik merupakan angka ganjil, misalnya k=3,5,7,9,11 dan seterusnya. Penentuan nilai k diperlu diperhatikan berdasarkan banyaknya data yang ada serta ukuran dimensi yang dibentuk oleh data. Semakin banyak data yang ada, angka k yang dipilih sebaiknya semakin rendah. Namun, semakin besar ukuran dimensi data, angka k yang dipilih sebaiknya semakin tinggi.

Langkah-langkah untuk menghitung metode K-Nearest Neighbor yaitu :

- a. Menentukan parameter k (Jumlah tetangga paling dekat)
- b. Menghitung kuadrat jarak Euclidian (queri instance) masing masing objek terhadap data sampel yang diberikan menggunakan persamaan seperti berikut. $d=\sqrt{(x^2-x^1)^2+(y^2-x^1)^2}$
- Kemudian mengurutkan data tersebut ke dalam kelompok yang mempunyai jarak Euclid terkecil.
- d. Mengumpulkan kategori Y(Klasifikasi K-Nearest Neighbor).
- e. Dengan menggunakan kategori K-Nearest Neighbor yang paling mayoritas maka dapat diprediksi nilai query instance yang telah dihitung.

2.3. PT. Indofurnitama Raya

Gambar 1. PT.Indofurnitama Raya

PT Indofurnitama Raya adalah sebuah perusahaan furniture yang berlokasi di Pasuruan, Jawa Timur. Didirikan pada tahun 1990 oleh Bapak Suyatno, perusahaan ini bergerak di bidang produksi dan perdagangan berbagai jenis furniture seperti lemari, kursi, meja, dan tempat tidur. Dengan memiliki pabrik dan showroom seluas 5000 m2, PT Indofurnitama Raya telah mempekerjakan lebih dari 100 karyawan dan memasarkan produknya baik ekspor maupun lokal. Perusahaan ini memproduksi furniture dari bahan baku kayu berkualitas tinggi seperti jati, mahoni, dan akasia, yang diolah dengan standar kualitas tinggi dan desain modern serta elegan [1].

2.4. Framework Laravel

Laravel adalah sebuah MVC atau Model View-Controller web development framework yang didesain untuk meningkatkan kualitas software serta meningkatkan produktivitas pekerjaan dengan sintaks yang bersih dan fungsional sehingga dapat mengurangi

banyak waktu untuk implementasi. Laravel merupakan framework dengan versi PHP atau Hypertext Preprocessor yang up-to-date. Laravel juga memberikan alat untuk berinteraksi dengan database vang disebut dengan migration, dimana developer dapat dengan mudah melakukan modifikasi sebuah database pada sebuah platform secara independent implementasi skema karena database direpresentasikan dalam sebuah class. Beberapa database yang telah didukung Laravel antara lain MySQL, PostgreSQL, MSSQL, serta SQLITE. Untuk implementasi active record pada Laravel disebut eloquent. Laravel juga memberikan sebuah command line interface yang disebut dengan artisan, developer dapat berinteraksi dengan aplikasi untuk sebuah aksi seperti migrations, testing, atau membuat controller dan mode [9].

2.5. Database Mysql

MySQL dapat diartikan sebagai antar muka standar untuk sistem manajemen reasional, termasuk sistem yang beroperasi pada komputer pribadi, yang bersifat opensource. MySQL memungkinkan seorang pengguna untuk mengetahui dimana lokasinya, atau bagaimana sebuah informasi disusun. MySQL merupakan sistem manajemen database yang bersifat reasional yang artinya data yang dikelola dalam database diletakan dalam beberapa tabel yang terpisah sehingga manipulasi data akan jauh lebih cepat [10]

3. ANALISIS DAN PERANCANGAN

3.1. Analisis Kebutuhan Fungsional

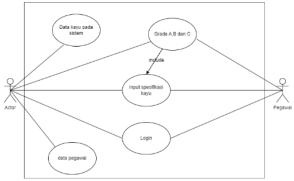
Kebutuhan fungsional dalam sistem pendukung keputusan pada website klasifikasi kualitas kayu menggunakan metode KNN pada PT.Indofurnitama Raya adalah :

- a. Sistem dapat menerima input data berupa nilai angka yang mewakili data kriteria kelembapan, kekuatan dan kepadatan.
- b. Sistem dapat menyimpan data kriteria ke database. 3. Sistem dapat menerima data uji berupa nilai angka data kayu.
- c. Sistem dapat menampilkan hasil klasifikasi kualitas kayu.
- d. Sistem dapat menghasilkan laporan akurasi klasifikasi.
- e. Role id admin dan karyawan.

3.2. Analisis Kebutuhan Non-Fungsional

Di PT. Indofurnitama Raya, kebutuhan nonfungsional adalah aspek kritis untuk memastikan bahwa sistem klasifikasi kayu yang dikembangkan dapat diandalkan, aman, dan efisien.

- a. Sistem harus menjamin bahwa data yang terkait dengan klasifikasi kayu terlindungi dari akses yang tidak sah.
- b. Sistem harus mampu merespons permintaan klasifikasi dalam waktu yang cepat, meskipun diakses oleh banyak pengguna secara bersamaan.


- c. Sistem harus mampu menangani peningkatan volume data dan jumlah pengguna seiring dengan pertumbuhan perusahaan tanpa penurunan kinerja yang signifikan.
- d. Antarmuka pengguna harus intuitif dan mudah digunakan oleh semua tingkat pengguna tanpa memerlukan pelatihan yang ekstensif.

3.3. Use Case Diagram

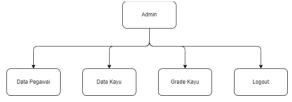
Penelitian ini, use case program seperti pada Gambar 1 merupakan usecase diagram dari sistem, dimana terdapat dua faktor yaitu Admin dan Pegawai.

a. Admin

Pada usecase diatas dijelaskan bahwa admin dapat mengontrol dan mengelola data pegawai, sebelum itu Admin harus melakukan login terlebih dahulu untuk dapat memantau data – data tersebut.

Gambar 2. Use case diagram

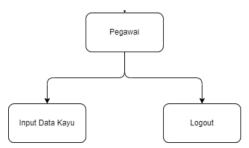
b. Pegawai


Pada usecase diatas dijelaskan bahwa Pegawai hanya dapat menginputkan data kayu yang telah di sediakan oleh website yang di buat, sebelum itu pegawai harus login terlebih dahulu.

3.4. Struktur Menu

Perancangan struktur menu digunakan untuk mengelompokkan beberapa menu kedalam kategori yang sesuai, dimana untuk mempermudah melakukan pembuatan aplikasi

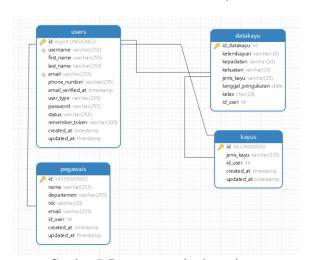
a. Struktur Menu Admin


Pada struktur menu admin yang ditunjukan Gambar 3, terdapat menu dimana admin dapat mengelola data pegawai, data kayu dan juga dapat melihat grade kayu yang telah di klasifikasi, kemudian dapat logout dari akun tersebut.

Gambar 3. Struktur menu admin

b. Struktur Menu Pegawai

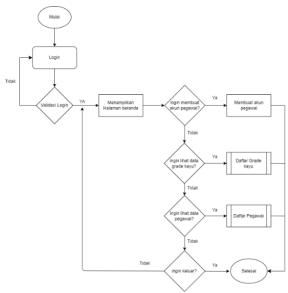
Pada struktur menu pegawai yang ditunjukan pada Gambar 4, terdapat menu untuk melakukan input data kayu dan logout.



Gambar 4. Struktur menu pegawai

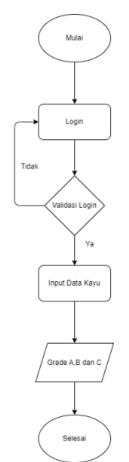
c. Perancangan Database

Pada Gambar 5 merupakan gambar rancangan database beserta relasi antar tabel yang dapat dijelaskan sebagai berikut:


- Tabel Users dan Pegawai:
 - Tabel Users dan Pegawai memiliki hubungan one-to-one, artinya setiap user hanya dapat memiliki satu entri di tabel pegawai.
- Tabel Pegawai dan Datakayu:
 - Tabel Pegawai dan Datakayu memiliki hubungan one-to-many, artinya satu pegawai dapat memiliki banyak entri data kayu.
- Tabel Kayu dan Datakayu:
 - Tabel Kayu dan Datakayu memiliki hubungan one-to-one, artinya setiap jenis kayu hanya dapat memiliki satu entri di tabel data kayu.

Gambar 5, Perancangan database sistem

d. Flowchart Admin


Pada Gambar 6 dijelaskan bahwa admin mulai login sebagai admin kemudian jika sudah tervalidasi akan di tampilkan ke tampilan beranda, admin dapat mengelola data pegawai, data kayu, membuat akun untuk pegawai dan dapat logout dari akun tersebut.

Gambar 6. Flowchart admin

e. Flowchart Pegawai

Pada Gambar 7 dijelaskan bahwa pegawai harus login terlebih dahulu, kemudian jika login berhasil maka pegawai dapat menginputkan data spesiifikasi kayu untuk di klasifikasikan kualitas kayu tersebut, kemudian data klasifikasi akan di tampung di database.

Gambar 7. Flowchart pegawai

f. Flowchart Metode

Algoritma K-Nearest Neighbor (KNN) dimulai dengan menentukan jumlah tetangga terdekat (parameter k), lalu menghitung jarak Euclidean antara instance yang akan diprediksi dengan setiap objek dalam data sampel. Objek-objek tersebut kemudian diurutkan berdasarkan jarak Euclidean, dan kategori dari k objek terdekat dikumpulkan. Dengan menggunakan kategori mayoritas dari tetangga terdekat, algoritma dapat memprediksi nilai untuk instance yang telah dihitung. Ini berfungsi dengan asumsi bahwa objek-objek dengan atribut yang mirip cenderung memiliki nilai atau kategori yang serupa, seperti gambar 7.

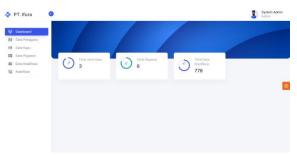
Gambar 8. Flowchart metode knn

4. IMPLEMENTASI DAN PENGUJIAN

4.1. Implementasi Sistem

Implementasi sistem adalah pembangunan dari rancangan sistem yang telah di buat sebelumnya. Hasil yang sudah dilakukan saat ini adalah pembuatan halaman Login, Tampilan data kayu dan daftar pegawai.

4.2. Tampilan Halaman Login



Gambar 9, Tampilan halaman login

Pada Gambar 9 menampilkan halaman Login yang berisi Email dan password kemudian masuk dengan menggunakan tombol sign in. Jika salah password atau email akan kembali lagi ke tampilan halaman login.

4.3. Tampilan Awal Dashbord

Pada Gambar 10 menampilkan halaman Dashboard, tampilan ini berisi informasi mengenai total kayu, total pegawai dan total data klasifikasi.

Gambar 10. Tampilan dashboard

4.4. Tampilan Halaman Data Pengguna

Gambar 11. Halaman data pengguna

Pada gambar 11 menampilkan halaman data pengguna yang berisi nama, username, Email dan tipe usernya, pada halaman ini juga dapat menambahkan pengguna atau user baru, yang dapat menambahkan user hanya admin.

4.5. Tampilan Data Kayu

Gambar 12. Data halaman data kayu

Pada Gambar 12 menampilkan halaman data kayu yang berisi jenis kayu yang telah di pakai di perusahaan PT.Indofurnitama Raya, kemudian button tambah berfungsi sebagai menambahkan data jenis kayu.

4.6. Tampilan Halaman Data Pegawai

| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai
| Data Pegawai

Gambar 13. Tampilan halaman data pegawai

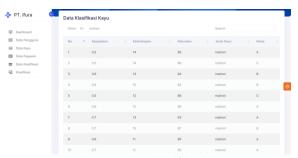
Pada Gambar 13 menampilkan halaman data pegawai yang berisi data beberapa pegawai yaitu berisi nama, departemen, nik dan email, button tambah berguna untuk menambahkan data pegawai dan hanya admin yang dapat menambahkannya.


4.7. Tampilan Data Uji Atau Data Training

Gambar 14. Tampilan halaman training

Pada Gambar 14 menampilkan halaman data kayu yang berisi data uji atau data trining yang di jadikan acuan untuk klasifikasi kualitas kayu, kemudian untuk button tambah berguna untuk menambahkan data kayu yang telah di klasifikasikan.

4.8. Tampilan Halaman Data Kayu



Gambar 15. Tampilan data kayu

Pada Gambar 15 menampilkan field jenis kayu, kelembapan, kepadatan dan kekuatan kayu yang akan di klasifikasikan, pada jenis kayu terdapat listbox yaitu kayu mahoni, merbau dan jati, kemudian button simpan untuk memproses data klasifikasi yang sudah di inputkan.

4.9. Tampilan Data Klasifikasi Kayu

Pada gambar 16 menampilkan data kayu yang telah di klasifikasikan guna mengetahui kualitas kayu, halaman ini menampilkan data klasifikasi, menghitung jarak Ecludian, data K dan nilai klasifikasi kayu.

Gambar 16. data klasifikasi kayu

4.10. Tampilan Halaman User Atau Pengguna.

Pada gambar 17 menampilkan halaman user atau pegawai, halaman user hampir sama dengan halaman admin akan tetapi halaman user tidak memiliki fitur lengkap, halaman user hanya dapat mengakses dashboard, data kayu, data klasifikasi kayu dan halaman klasifikasi.

Gambar 17. Halaman user atau pengguna

4.11. Pengujian Black Box Pada Web

Untuk memastikan sistem telah berjalan dengan baik, maka dilakukan pengujian yang dalam hal ini menggunakan pengujian blackbox sebagai berikut:

1) Pengujian Halaman Admin

Tabel 1. Pengujian Halaman Admin

No	Fitur	Skenario	Hasil
1	Login	Dapat login dengan menginputkan username dan password	Sesuai
2	Menu Dashboard	Dapat Menampilkan informasi data kayu, total pegawai dan total data klasifikasi	Sesuai
3	Menu Data kayu	CRUD dapat berjalan dan menampilkan data kayu	Sesuai
4	Menu Data pegawai	CRUD dapat berjalan dan menampilkan data pegawai	Sesuai
5	Menu Data klasifikasi (train)	Dapat menampilkan data training	Sesuai
6	Menu klasifikasi	Dapat meng-inputkan data klasifikasi dan hasilnya muncul Output Grade kayu	Sesuai

No	Fitur	Skenario	Hasil
7	Logout	Dapat menghapus session dan keluar dari akun	Sesuai

Hasil pengujian menunjukkan bahwa semua fitur website berfungsi sesuai harapan. Fitur login bekerja dengan baik, memungkinkan akses dengan username dan password. Dashboard menampilkan informasi penting, dan fitur CRUD untuk data kayu dan pegawai beroperasi efektif. Menu klasifikasi dapat memproses dan menampilkan output grade kayu dengan benar. Fitur logout juga berfungsi sempurna, memastikan sesi pengguna diakhiri dengan benar. Secara keseluruhan, semua fitur telah diuji dan memenuhi kebutuhan sistem.

2) Pengujian Halaman pegawai.

Tabel 2. Pengujian Halaman Pegawai

No	Fitur	Skenario	Berhasil
1	Login	Dapat login dengan menginputkan username dan password	Sesuai
2	Menu Dashboard	Dapat Menampilkan informasi data kayu, total pegawai dan total data klasifikasi	Sesuai
3	Menu klasifikasi	Dapat meng-inputkan data klasifikasi dan hasilnya muncul Output Grade kayu	Sesuai
4	Logout	Dapat menghapus session dan keluar dari akun	Sesuai

Berdasarkan hasil pengujian, seluruh fitur utama pada website berfungsi sesuai harapan. Fitur login memungkinkan pengguna untuk masuk dengan username dan password, dashboard menampilkan data kayu, jumlah pegawai, serta total klasifikasi dengan baik. Fitur klasifikasi berhasil mengolah data dan menampilkan output grade kayu dengan benar, dan fitur logout bekerja optimal, menghapus sesi dan keluar dari akun dengan sempurna. Secara keseluruhan, semua fitur yang diuji berfungsi sesuai dengan yang diharapkan.

4.12. Pengujia Metode

1) Pengujian K53 pada kayu jati.

Tabel 3. Data akurasi kayu merbau

No.	Kelem bapan	Kepa datan	Keku atan	Jenis kayu	kelas
1	14	0,6	60	jati	C
2	15	0,6	61	jati	В
3	10	0,7	60	jati	В
4	9	0,6	60	jati	В
5	13	0,6	61	jati	В
203	14	0,6	60	jati	A

Tabel 4. data *testing*

Kelembapan	kepadatan	kekuatan	Jenis kayu
6	0.6	81	jati

Langkah-langkah untuk menghitung metode *K-Nearest Neighbor* yaitu :

a. Menghitung kuadrat jarak *Euclidian (queri instance)* masing-masing objek terhadap data sampel yang ada pada Tabel 3.

$$d = \sqrt{(x^2 - x^1)^2 + (y^2 - x^1)^2 + (z^1 - z^2)^2}$$

$$d = \sqrt{(15 - 6)^2 + (0,6 - 0,6)^2 + (61 - 81)^2}$$

$$d = \sqrt{64 + 0 + 441}$$

$$d = 22.472$$

Tabel 5. Perhitungan jarak

No	Kelem bapan	kepa datan	Keku atan	Jenis kayu	Kel as	jarak
1	6	0,6	60	Jati	A	22.47220 505
2	15	0,6	61	jati	A	21,93171 22
3	10	0,7	60	jati	В	21,37779 222
4	9	0,6	60	jati	С	21,21320 344
5	13	0,6	61	jati	С	21,18962 01
	•••			jati		•••
53	10	0,5	65	jati	С	16,49272 567

b. Setelah dihitung jarak per data, kemudian mengurutkan data jenis kayu dan jarak yang mempunyai jarak Euclidian terkecil.

Table 6. Tabel pengurutan data terkecil

No	Kele m bapan	Kepa datan	Keku atan	Jenis kayu	Kel as	Jarak
1	0.6	6	81	jati	Α	0
2	0.6	7	81	jati	В	1
3	0.5	6	82	jati	A	1.00498756 2112
4	0.5	7	80	jati	A	1.41774468 78758
5	0.7	7	82	jati	С	1.41774468 78758
••				Jati		•••
53	0.7	11	76	jati	В	7.07177488 32949

c. Mengumpulkan kategori Y(Klasifikasi *K-Nearest Neighbor*).

Dengan menggunakan kategori K-Nearest Neighbor yang paling mayoritas maka dapat diprediksi nilai jarak Euclidian yang telah dihitung. Setelah diurutkan mulai dari yang terkecil data yang ada pada Tabel 4.4, Jumlah A: 16, Jumlah B: 21, Jumlah C: 8. kelas yang paling Banyak di temui adalah kelas B sehingga hasil klasifikasi data baru adalah kelas B.

2) Pengujian K53 pada kayu merbau.

Tabel 7. Data akurasi kayu merbau

No.	Kelem bapan	Kepa datan	Keku atan	Jenis kayu	kelas
1	14	0,7	99	merbau	C
2	11	0,5	99	merbau	В
3	6	0,7	99	merbau	В
4	7	0,7	99	merbau	В
5	9	0,6	99	merbau	В
187	9	0,5	74	merbau	A

Tabel 8. data testing

		0	
Kelembapan	kepadatan	kekuatan	Jenis kayu
5	0,6	77	jati

Langkah-langkah untuk menghitung metode *K-Nearest Neighbor* yaitu :

a. Menghitung kuadrat jarak *Euclidian* (*queri instance*) masing-masing objek terhadap data sampel yang ada pada Tabel 7.

$$d = \sqrt{(x2 - x1)2 + (y2 - x1)2 + (z1 - z2)2}$$

$$d = \sqrt{(14 - 5)2 + (0,5 - 0,6)2 + (99 - 77)2}$$

$$d = \sqrt{81 + 0,01 + 484}$$

$$d = 23,7699$$

Tabel 9. Perhitungan jarak

No	kelemba pan	kepada tan	kekuat an	Jenis kayu	Ke las	jarak
1	14	0,7	99	merbau	В	23,769 939
2	11	0,5	99	merbau	A	22,803 7278
3	9	0,6	99	merbau	A	22,360 6798
4	8	0,5	99	merbau	A	22,203 8285
5	8	0,6	99	merbau	A	22,203 6033
				Merbau		
53	9	0,5	93	merbau	A	16,492 7257

b. Setelah dihitung jarak per data, kemudian mengurutkan data jenis kayu dan jarak yang mempunyai jarak Euclidian terkecil.

Table 10. Tabel pengurutan data terkecil

No.	Kelem bapan	Kepa datan	Keku atan	Jenis kayu	Kel as	jarak
1	5	0,5	82	merbau	В	5,00099 99
2	6	0,6	82	merbau	A	5,09901 951
3	6	0,5	82	merbau	A	5,1
4	9	0,7	81	merbau	A	5,65773 806
5	8	0,6	82	merbau	В	5,83095 189

No.	Kelem bapan			Jenis kayu	Kel as	jarak
53	15	0,6	72	merbau	В	11,1803 399

c. Mengumpulkan kategori Y(Klasifikasi *K-Nearest Neighbor*).

Dengan menggunakan kategori K-Nearest Neighbor yang paling mayoritas maka dapat diprediksi nilai jarak Euclidian yang telah dihitung. Setelah diurutkan mulai dari yang terkecil data yang ada pada Tabel 4.8, Jumlah A: 21, Jumlah B: 26, Jumlah C: 5 kelas yang paling Banyak di temui adalah kelas B sehingga hasil klasifikasi data baru adalah kelas B.

Dari perhitungan diatas dapat disimpulkan bahwa untuk akurasi k = 53 pada kayu merbau sebesar 62,26% untuk nilai keakuratannya, sedangkan untuk kayu mahoni tingkat keakuratannya menurun sekitar 50,94%, untuk kayu jati tingkat keakuratannya lebih tinggi sedikit, sekitar 56,60%

5. KESIMPULAN DAN SARAN

Pengujian yang dilakukan menunjukkan bahwa program klasifikasi kayu memiliki tingkat akurasi sebesar 62,26%, yang mengindikasikan bahwa program ini belum sepenuhnya akurat. Analisis Blackbox memastikan bahwa fitur Halaman Admin dan Pegawai berfungsi dengan baik setelah dilakukan pengujian. Akurasi klasifikasi kayu bervariasi, dengan kayu merbau memiliki akurasi 62,26%, kayu mahoni 50,94%, dan kayu jati 56,60%. Berdasarkan survei yang dilakukan, admin PT. Indofurnitama Raya menilai tampilan website menarik dengan nilai 95,24%. Selain itu, dari enam responden pegawai, lima di antaranya merasa tampilan website nyaman digunakan, sementara satu responden menilai cukup. menghasilkan nilai kepuasan 94,44% untuk aplikasi ini. Hasil ini menunjukkan bahwa meskipun program belum sepenuhnya akurat, tampilan dan fungsi website secara keseluruhan dinilai positif oleh pengguna. Diperlukan eksplorasi dan pengembangan lebih lanjut terhadap metode klasifikasi lain atau metode ensemble untuk meningkatkan akurasi dalam klasifikasi kualitas kayu. Peningkatan antarmuka pengguna juga penting untuk memberikan pengalaman yang lebih baik, menarik, dan responsif. Penggunaan metode K-Nearest Neighbors dalam studi kasus ini menunjukkan hasil yang kurang memuaskan dengan akurasi tertinggi hanya mencapai 62,26%. Oleh karena itu, disarankan untuk menggunakan sampel data yang berbeda guna memperoleh hasil yang lebih akurat.

DAFTAR PUSTAKA

- [1] Kadir, Interviewee, Wawancara pribadi mengenai penilaian kualitas kayu pada PT. Indofurnitama Raya. [Interview]. 2024
- [2] P. Putra, A. M. H. Pardede and S. Syahputra, "Analisis Metode K-Nearest Neighbour (Knn) Dalam Klasifikasi Data Iris Bunga.," *JTIK*

- (Jurnal Teknik Informatika Kaputama), pp. 6(1), 297-305., 2022
- [3] Paramita dkk., "Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor," vol. 04, no. 1, pp. 1–6, 2019, doi: 10.30591/jpit.v4i1.1267, pp. 1-6, 2019.
- [4] F. T. Admojo, "Klasifikasi Aroma Alkohol Menggunakan Metode KNN.," *Indonesian Journal of Data and Science*, pp. 1(2), 34-38., 2020
- [5] Ajijah, Kurniawan and Susilawati, "Klasifikasi Teks Mining Terhadap Analisa Isu Kegiatan Tenaga Lapangan Menggunakan Algoritma K-Nearest Neighbor (KNN).," *J-SAKTI (Jurnal Sains Komputer dan Informatika)*., pp. 7(1), 254-262., 2023
- [6] M. d. Nanda, "Metode K-Nearest Neighbor (KNN) dalam Memprediksi Curah Hujan di Kota

- Bandung, Prosiding Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik," pp. pp 388-393, 2022
- [7] N. d. Azizah, "Penerapan Algoritma Klasifikasi K-Nearest Neighbor pada penyakit Diabetes," Seminar Nasional Statistik Aktuaria II, 2023
- [8] W. D.S and N. & R. W. I.M, "Penerapan Algoritma K-Nearest Neighbor dalam Klasifikasi Tingkat," 2019
- [9] E. S. Honggara, "Website Gereja dengan Framework Laravel," *Journal of Information System, Graphics, Hospitality and Technology*, p. 30–34, 2020
- [10] S. Suwandi, M. Hatta and E. Elvantonius, "Implementasi Metode Imprest Fund Dalam Aplikasi Sistem Akuntansi Dana Kas Kecil Berbasis Web.," *Jurnal Soshum Insentif*, pp. 253-264, 2019