Perancangan Dan Pengembangan Produk Lampu Rumah Berbasis Mikrokontroler Arduino

Achmad Fatahilah^{1,*}, Trismawati², Tri Prihatiningsih³

Teknik Industri Universitas Panca Marga, Probolinggo 67271, Indonesia E-mail: achmadfatahilah@gmail.com

Abstrak

Lampu adalah alat penerangan yang sangat penting dalam kehidupan. Tingginya kebutuhan manusia akan penerangan lingkungan merupakan aspek yang sangat penting dalam menjalankan aktifitas sehari hari, kepentingan studi dan pekerjaan menuntut manusia untuk tidak pulang ke rumah dengan kesibukan masing-masing yang dapat mengakibatkan lingkungan rumah akan terlihat gelap dikarenakan penerangan yang tidak aktif. Seiring perkembangannya, terdapat tuntutan penambahan fungsi dari lampu rumah yang ada. Berdasarkan latar belakang tersebut, maka dalam penelitian kali ini peneliti akan membuat produk dari pengembangan lampu rumah yang sudah ada dengan penambahan fungsi sesuai requirement dari penggunanya. Untuk mewujudkan tujuan itu digunakan Metode Ouality Function Deployment (QFD) untuk menganalisis suara konsumen tentang lampu rumah dan keinginan dari konsumen. Hasil penelitian ini adalah produk lampu fathlamp yaitu lampu rumah yang berbasis mikrokontroler arduino. Untuk pengolahnnya digunakan mikrokontroler ESP8266 sedangkan untuk outputnya berupa lampu rumah led 15 watt. Penambahan fungsi pada lampu rumah fathlamp yang dibuat ini adalah dapat menggunakan smartphone android sebagai sakelar lampu yang dihubungkan menggunakan jaringan wifi. Kehadiran lampu fathlamp ini merupakan salah satu terobosan baru dalam upaya memberikan alternatif penggunaan alat penerangan yang hemat energi dan memudahkan pengguna dalam mengontrol lampu rumah pada jarak jauh.

Kata kunci: mikrokontroler, Quality Function Deployment (QFD), smartphone, wifi.

Pendahuluan

Lampu adalah sebuah perangkat yang mendukung sambungan daya listrik ke sebuah perangkat yang menghasilkan cahaya. Lampu yang sekarang masih banyak digunakan dikalangan masyarakat yaitu lampu TL, Lampu TL atau yang lebih dikenal dengan lampu neon adalah lampu listrik yang memanfaatkan gas neon dan lapisan *Fluorescent* sebagai pemendar cahaya pada saat dialiri arus listrik [1]. Dalam pemakaiannya, masyarakat mempunyai keluhan tentang kekurangan lampu TL yang digunakan setiap hari dan mengharapkan adanya suatu produk baru yang akan mempunyai kelebihan dari lampu sebelumnya, berdasarkan hasil survey awal yang dilakukan peneliti, berikut keluhan konsumen tentang lampu TL yang selama ini digunakan:

- 1. Penggunaan daya listrik pada Lampu TL atau lampu neon cenderung lebih boros energi dikarenakan membutuhkan daya listrik tinggi untuk menyalakannya.
- 2. Kecerahan cahaya pada lampu TL cenderung silau mata dan cepat redup.
- 3. Mudah pecah jika lampu TL tidak sengaja jatuh dikarenakan bahan dari lampu TL sendiri adalah terbuat dari kaca.
- 4. Perawatan lampu TL sangat sulit karena sekali pakai dan tidak dapat diperbaiki.
- 5. Umur pemakaian lampu TL yang cenderung lebih singkat.
- 6. Tombol On-Off yang digunakan pada saat ini masih dilakukan secara manual menggunakan saklar tembok dimana ketika pemilik rumah pada malam hari tidak berada didalam rumah maka keadaan lampu rumah akan mati.

Dengan adanya keluhan konsumen yang sudah diterangkan diatas, maka peneliti akan membuat suatu pengembangan produk lampu rumah berbasis mikrokontroler arduino dengan sistem kendali onoff lampu menggunakan *smartphone* android dengan memanfaatkan fasilitas wifi yang dapat memudahkan pengguna dalam mengontrol lampu rumah pada jarak jauh.

Pada permasalahan penelitian ini, peneliti akan menggunakan Metode *Quality Function Deployment* (QFD). Metode tersebut merupakan metode yang sesuai untuk melakukan perbaikan pada kualitas dan pengembangan suatu produk [2]. Metode QFD yaitu metode yang mampu mengidentifikasi keinginan konsumen yang sesungguhnya dan merupakan praktik merancang proses sebagai tanggapan terhadap kebutuhan konsumen.

Hasil dan pembahasan

Karakteristik Responden

Sampel atribut dalam hal ini adalah populasi dari pengguna lampu rumah yang berada di wilayah kota Probolinggo. Untuk menentukan ukuran sampel dari suatu populasi dapat digunakan rumus Slovin [3] sebagai berikut :

$$n = \frac{N}{1 + N.e^2}$$

Keterangan: n = Jumlah sampel yang dicari

N = Jumlah populasi

e = Persen kelonggaran ketidaktelitian karena kesalahan pengambilan sampel yang masih dapat ditolerir atau diinginkan (sebesar 10%)

Nilai e ditetapkan sebesar 10% atau 0,1 karena populasi penelitian homogen, sehingga penelitian menetapkan tingkat kesalahan dalam pengambilan sampel sebesar 10% [3] berdasarkan rumus di atas maka diperoleh nilai n sebagai berikut :

$$n = \frac{120391}{120391 + 120391.0.1^{2}}$$

$$= \frac{120391}{1204.91}$$
= 99.91 (dibulatkan jadi 100 sampel)

Tabel 1. Responden Berdsasarkan Usia, Jenis Kelamin, Pendidikan dan Pekerjaan

Karakteristik	Votogowi	N =	N = 100		
Karakteristik	Kategori	N	%		
Usia	15-25 Tahun	35 Orang	35.0 %		
	26-35 Tahun	26 Orang	26.0 %		
	36-45 Tahun	26 Orang	26.0 %		
	46-55 Tahun	10 Orang	10.0 %		
	56-75 Tahun	3 Orang	3.0 %		
Pendidikan Terakhir	SD	53 Orang	53.0 %		
	SMP	15 Orang	15.0 %		
	SMA	21 Orang	21.0 %		
	PT	11 Orang	11.0 %		
Jenis Kelamin	Lak-laki	57 Orang	57.0 %		
	Perempuan	43 Orang	43.0 %		
Pekerjaan	IRT	11 Orang	11.0 %		
	Swasta	70 Orang	70.0 %		
	Buruh	9 Orang	9.0 %		
	Mahasiswa	6 Orang	6.0 %		
	PNS	4 Orang	4.0 %		

Analisis Quality Function Deployment (QFD)

a. Voice of Customer (VOC)

Untuk mengetahui dan mengidentifikasi hal-hal yang diinginkan oleh konsumen (*voice of customer*) terhadap perancangan produk lampu rumah yang akan dibuat, dilakukan penyebaran kuesioner kepada 44 orang responden. Berikut atribut yang diinginkan oleh konsumen dapat dilihat pada Tabel 2.

Tabel 2. Data Atribut Produk Lampu Rumah

No.	Atribut
1.	Desain Sederhana
2.	Kecerahan Cahaya
3.	Harga
4.	Bahan
5.	Konsumsi Energi
6.	Perawatan
7.	Mudah Dalam penggunaan

Dalam penelitian ini menggunakan *One Shot* (Sekali ukur) dengan bantuan software SPSS 16 dan hasilnya sebagai berikut:

Tabel 3. Analisis Realibilitas

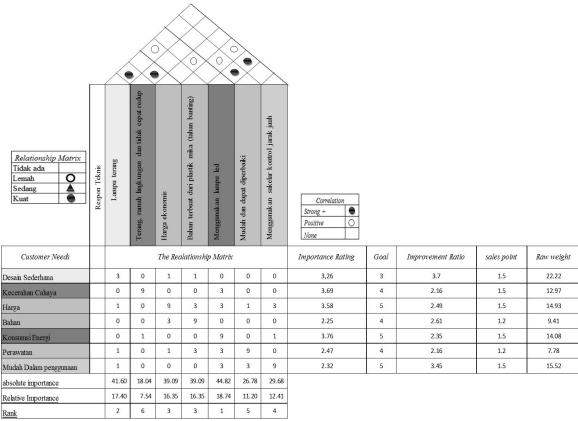
Cronbach's Alpha	N of items
0.857	7

Dari table diatas nilai *Alfa Cronbach* adalah 0.857 artinya kuesioner atau alat ukur yang dipakai adalah valid. Sedangkan hasil uji validasi untuk ke tujuh atribut dapat dilihat pada table dibawah ini:

Tabel 4. Hasil Uji Validitas

No.	Atribut	r hitung	r tabel	Keterangan
1.	Desain Sederhana	0.432	0.197	Valid
2.	Kecerahan Cahaya	0.395	0.197	Valid
3.	Harga	0.823	0.197	Valid
4.	Bahan	0.515	0.197	Valid
5.	Konsumsi Energi	0.864	0.197	Valid
6.	Perawatan	0.364	0.197	Valid
7.	Mudah Dalam penggunaan	0.198	0.197	Valid

b. Karakteristik Teknis


Technical Response dalam arti luas adalah bagaimana respon / tindakan yang akan peneliti berikan untuk kebutuhan konsumen (VOC).

Tabel 5. Data Karakteristik Teknis

No.	Atribut	Karakteristik Teknis	
1.	Desain Sederhana	Bentuk desain yang bulat dan menarik	
2.	Kecerahan Cahaya	Terang, ramah lingkungan dan tidak cepat redup	
3.	Harga	Harga ekonomis	
4.	Bahan	Bahan terbuat dari plastik mika (tahan banting)	

5.	Konsumsi Energi	Menggunakan lampu led
6.	Perawatan	Mudah dan dapat diperbaiki
7	Mudah Dalam	Menggunakan sakelar kontrol jarak jauh dengan smartphone
/.	penggunaan	android

c. Hasil House of Quality (HOQ) Perancangan Produk Lampu Rumah

Gambar 1. Hasil HOQ perancangan produk

Berdasarkan hasil analisis matrik HOQ di atas didapatkan bahwa hasil perhitungan bobot dan perengkingan sebagai berikut:

Tabel 6. Hasil vang diperhatikan dari VOC

No.	Atribut	Respon teknis	Ranking	Hasil Bobot (%)
1.	Konsumsi Energi	Menggunakan Lampu led	1	18.74
2.	Harga	Harga Ekonomis	2	17.40
3.	Bahan	Terbuat dari plastik mika	3	16.35
4.	Perawatan	Mudah dan dapat diperbaiki	4	16.35
5.	Mudah dalam penggunaan	Menggunakan saklar control jarak jauh	5	12.41
6.	Kecerahan cahaya	Terang Ramah lingkungan dan tidak cepat redup	6	11.20

7.	Desain Sederhana	Bentuk desain yang bulat dan menarik	7	7.54

Perancangan produk lampu Rumah

- 1. Perancangan perangkat lunak (*Software*)
- a. Perancangan Program Mikrokontroler Dikomputer

Pada tahapan ini, peneliti menggunakan *software* berupa aplikasi arduino IDE untuk membuat program yang nantinya akan diupload ke pengendalian utama. Peneliti menggunakan arduino ESP8266 dimana dalam penginputan kode program yang akan diproses dapat dilihat pada gambar 2.

Gambar 2. Tampilan kode program IDE

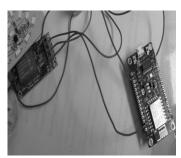
b. Perancangan Perangkat Lunak Pada Pengendali Utama

Peneliti menghubungkan perangkat arduino ESP8266 dengan perangkat komputer menggunakan kabel USB dan bisa dilihat pada gambar 6 mengumpulkan hasil kuesioner survey awal.

Gambar 3. Pengkoneksian board ESP8266 ke perangkat komputer

c. Perancangan perangkat lunak pada smartphone android

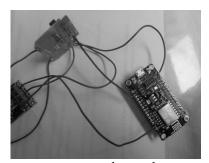
Aplikasi yang digunakan untuk perancangan pada *smartphone android* ini adalah aplikasi *blynk* dan bisa didownload di *playstore* pada *smartphone android*. Berikut ini adalah tampilan rancangan layar pada aplikasi android yang akan digunakan untuk mengendalikan lampu.


Gambar 4. Rancangan layar pengendali pada smartphone android

2. Perancangan perangkat keras (*hardware*)

Perancangan perangkat keras merupakan rancangan atau rangkaian dari alat yang digunakan untuk membuat produk lampu rumah dengan pengendalian berbasis mikrokontroler arduino menggunakan *smartphone android*.

a. Perancangan relay module dengan board arduino


Rangkaian *relay module* dengan *board* arduino digunakan untuk menghubungkan atau memutuskan arus listrik yang mengalir ke lampu yang terhubung.

Gambar 5. Rancangan relay module dengan board arduino

b. Perancangan *power adapter* dengan arduino dan *relay module*

Pada rangkaian ini *power adapter* digunakan untuk mengubah tegangan AC yang tinggi menjadi DC yang rendah yang kemudian akan diteruskan ke *board* arduino ESP8266.

Gambar 6. Perancangan *power adapter* dengan arduino dan *relay*

Gambar 7. Hasil produk perancangan lampu rumah

Kesimpulan

Berdasarkan hasil analisis dan perancangan yang telah dilakukan, maka dapat diambil beberapa kesimpulan sebagai berikut: Dengan adanya pengembangan produk lampu rumah ini, masyarakat dapat terbantu dalam mengkontrol lampu rumah jika dalam kondisi berpergian. Produk ini dapat digunakan untuk masyarakat kalangan menengah ke atas dikarenakan dalam pengoperasian produk membutuhkan wifi dan smarphone android.

Daftar Referensi

- [1] Muhaimin. 2001. Teknologi Pencahayaan. Refika aditama. Bandung.
- [2] Ulrich, Karl T., dan Steven D.E., 2001. Perancangan dan Pengembangan Produk. Salemba Teknika, Jakarta.
- [3] Husein Umar. 1999. *Metodologi Penelitian Aplikasi dalam Pemasaran*. Jakarta: PT.Gramedia Pustaka Utama.