STUDI PERENCANAAN STABILITAS LERENG DENGAN PERKUATAN DINDING PENAHAN TANAH TIPE KANTILEVER PADA LERENG JALAN KEMUNING LOR KECAMATAN ARJASA KABUPATEN JEMBER

Baiq Cahaya Dewi Andriyani¹, Eding Iskak Imananto², dan Eri Andrian Yudianto³

1) Mahasiswa Program Studi Teknik Sipil ITN Malang 2) 3) Dosen Program Studi Teknik Sipil ITN Malang

ABSTRAK

Stabilitas lereng Jalan Kemuning Lor Kecamatan Arjasa Kabupaten Jember dan perkuatan lereng dengan menggunakan kantilever dengan tanah timbunan menggunakan tanah yang parameternya bagus. Longsor yang terjadi pada musim hujan, mengakibatkan tanah menjadi jenuh dan memungkinkan terjadinya kelongsoran susulan. Untuk mengatasi hal tersebut, dilakukan analisis terhadap stabilitas lereng pada saat lereng dalam kondisi existing, dan setelah adanya penambahan perkuatan dinding penahan tanah tipe kantilever.

Dalam menganalisis stabilitas lereng digunakan bantuan program komputer yaitu SLOPE/W untuk mengetahui angka keamanan secara akurat dalam waktu yang singkat. Analisis ini juga menggunakan Methode Irisan Bishop untuk megetahui stabilitas terhadap kelongsoraan lereng.

Berdasarkan hasil analisis stabilitas lereng pada saat kondisi existing pada lereng didapat bahwa angka keamanan terhadap longsoran lebih kecil dari pada 1. Untuk mencegah terjadinya longsor, maka dilakukan perbaikan lereng dengan menggunakan timbunan dan perkuatan. Lereng pada kondisi existing mempunyai kemiringan 32°, dan dengan ketinggian 24 m. Berdasarkan hasil yang diperoleh setelah lereng diperbaiki dan penambahan pemasangan kantilever, didapat angka keamanan terhadap guling, geser lebih besar dari 1,5 dan daya dukung tanah yang aman (sesuai yang diisyaratkan). Dengan demikian stabilitas lereng pada Jalan Kemuning Lor Kecamatan Arjasa Kabupaten Jember menjadi aman.

Kata kunci: stabilitas lereng, longsor, angka keamanan, dan kantilever

ABSTRACT

The stability of the slopes of Jalan Kemuning Lor, Arjasa Subdistrict, Jember Regency and the reinforcement of the slope using cantilever with landfill using soil with good parameters. Landslides that occur during the rainy season, cause the soil to become saturated and allow for subsequent landslides. To overcome this, an analysis of the stability of the slope when the slope is in existing conditions, and after the addition of cantilever type retaining wall retaining walls.

In analyzing the stability of the slope used a computer program that is SLOPE / W to find out the security figures accurately in a short time. This analysis also uses the Bishop Slice Method to determine the stability of slope slope.

Based on the results of the analysis of the slope stability when the existing conditions on the slope, it is found that the safety value of the landslide is smaller than 1. To prevent landslides, the slope is repaired using heaps and reinforcement. The existing slope has a slope of 32 °, and with a height of 24 m. Based on the results obtained after the slope is repaired and the addition of cantilever installation, safety figures for rolling, sliding are greater than 1.5 and the carrying capacity of the soil is safe (as required). Thus the stability of the slopes on Jalan Kemuning Lor, Arjasa District, Jember Regency becomes safe.

Keywords: slope stability, landslides, safety figures, and cantilevers

PENDAHULUAN

Tingkat keamanan suatu lereng dipengaruhi oleh beberapa faktor, diantaranya adalah faktor kemiringan dan beban yang bekerja diatasnya. Kondisi lereng dengan beban yang besar dan kemiringan yang curam dapat menyebabkan terjadinya kelongsoran. Seperti ruas jalan Kemuning Lor Kecamatan Arjasa Kabupaten Jember memiliki kondisi geografis terdiri dari tebing dan jurang yang cukup curam mengakibatkan kelongsoran dan pengikisan sebagian bahu jalan. Hal ini tentunya

bisa membahayakan pengguna jalan di sekitar lereng sehingga diperlukan solusi untuk menjadikan lereng tersebut aman dari bahaya longsor.

Oleh karena itu, sangat penting untuk memperhatikan faktor kestabilan tanah. Salah satunya dengan cara pengendalian kestabilan tanah dengan membangun dinding penahan tanah. Dinding penahan tanah digunakan untuk menahan tekanan yang ditimbulkan oleh tanah urugan atau tanah asli. Salah satunya dengan membangun dinding penahan tanah tipe Kantilever walls.

Dinding penahan tanah tipe kantilever umumnya digunakan untuk menahan tekanan tanah pada timbunan maupun tebing. Ciri khas dari kantilever yaitu pada dasar strukturnya berupa model telapak memanjang yang bersifat jepit untuk menjaga kestabilan dari struktur penahan. Untuk merencanakan dinding penahan tanah yang aman, harus dapat memperkirakan dan menghitung kestabilan dinding penahan tanah. Yang perlu diperhatikan untuk menghitung kestabilan dinding penahan tanah adalah kestabilan geser dinding penahan dan kestabilan terhadap guling.

Adapun perumusan masalah dalam penelitian ini sebagai berikut :

- 1. Berapa nilai angka keamanan (FS) pada lereng Jalan Kemuning Lor Kec. Arjasa Kab. Jember ?
- 2. Berapa perencanaan dinding penahan tipe kantilever yang aman terhadap guling (Overturning), geser (Shear /Slidding) dan daya dukung tanah?
- 3. Bagaimana menghitung penulangan dinding penahan tanah?

Tujuan yang ingin dicapai dalam penelitian ini adalah:

- Menentukan nilai angka keamanan (SF) pada lereng Jalan Kemuning Lor Kec. Arjasa Kab. Jember.
- 2. Menentukan perencanaan dinding penahan tipe kantilever terhadap guling (Overturning), geser (Shear /Slidding) dan daya dukung tanah.

TINJAUAN PUSTAKA

Stabilitas Lereng

Pada permukaan tanah yang tidak horisontal, komponen gravitasi cenderung untuk menggerakkan tanah ke bawah. Jika komponen gravitasi sedemikian besar sehingga perlawanan terhadap geseran yang dapat dikerahkan oleh tanah pada bidang longsornya terlampaui, maka akan terjadi kelongsoran lereng. Analisis stabilitas pada permukaan tanah yang miring ini, disebut analisis stabilitas lereng.

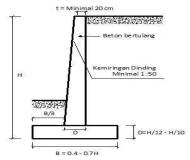
Lereng dan Longsoran

Lereng adalah suatu permukaan tanah yang miring dan membentuk sudut tertentu terhadap suatu bidang horizontal. Pada tempat dimana terdapat dua permukaan tanah yang berbeda ketinggian, maka akan ada gaya-gaya yang mendorong sehingga tanah yang lebih tinggi kedudukannya cenderung bergerak kearah bawah yang disebut dengan gaya potensial gravitasi yang menyebabkan terjadinya longsor (Tjokorda, dkk, 2010 dalam Saputra, 2017).

Pembebanan pada Lereng

Gaya yang ditimbulkan oleh adanya struktur jalan raya diatas konstruksi lereng harus mampu ditahan oleh lereng tersebut, gaya tersebut yaitu gaya vertikal yang disebabkan oleh beban perkerasan dan beban kendaraan. Gaya-gaya yang berasal dari kendaraan nantinya akan diteruskan pada perkerasan sebagai tekanan vertikal. Tekanan vertikal dapat ditentukan dengan menggunakan penyebaran tekanan (2H: 1V atau α = \pm 260) dari Giroud dan Noiray (1981) dalam Uswatun Chasanah, (2012).

Tekanan Tanah Lateral


Tanah terbentuk dari pelapukan batuan dan proses pengendapan. Selama proses pengendapan, tanah mengalami konsolidasi, karena pengaruh tekanan overburden (yaitu oleh akibat beban tanahnya sendiri). Untuk merencanakan bangunan penahan tanah sering didasarkan atas keadaan yang menyakinkan keruntuhan total tidak akan terjadi. Gerakan beberapa sentimeter sering tidak begitu penting sepanjang ada jaminan bahwa gerakan-gerakan yang lebih besar lagi tidak akan terjadi. Dalam perancangan dinding penahan, biasanya dilakukan dengan cara menganalisis kondisi-kondisi yang akan terjadi pada keadaan runtuh, kemudian memberikan faktor aman yang cukup yang dipertimbangkan terhadap keruntuhan tersebut.

Dinding Penahan Tanah

Bangunan dinding penahan tanah berfungsi untuk menyokong dan menahan tekanan tanah. Baik akibat beban hujan, berat tanah itu sendiri maupun akibat beban yang bekerja di atasnya dan tekanan lateral tanah yang ditimbulkan oleh tanah urug. Bangunan ini biasanya dibuat proyek-proyek konstruksi seperti: irigasi, jalan raya, pelabuhan dan lain- lain. Dalam kasus ini, pembuatan jembatan didesain dengan cara membuat timbunan tanah sepanjang bentangan jembatan lalu ditopang dengan menggunakan dinding penahan tanah. Kestabilan dinding penahan tanah terutama dari berat sendiri struktur dan berat tanah yang berada di atas plat pondasi. Besar dan distribusi tekanan tanah pada dinding penahan tanah sangat bergantung pada gerakan ke arah lateral tanah relatif terhadap dinding.

Dinding Kantilever

Dinding kantilever pada Gambar 2.13 adalah dinding yang terdiri dari kombinasi dinding dan beton bertulang yang berbentuk huruf T. Ketebalan dari kedua bagian ini relatif tipis dan secara penuh diberi tulangan untuk menahan momen dan gaya-gaya lintang yang bekerja padanya. Dinding tipe kantilever memiliki kelebihan dengan ukuran dimensi yang kecil.

Gambar 1. Dinding penahan tanah

Keterangan:

H = Tinggi dinding penahan tanah (m)

B = Lebar telapak dinding penahan (m)

D = Lebar tumit dinding penahn (m)

D = H/12 - H/10 = Tebal kaki dinding penahan tanah (Hardiyatmo, 2011)

Daya Dukung Ijin dari Tanah

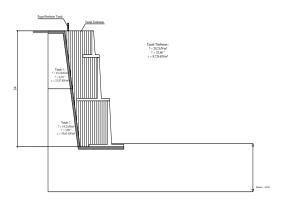
Tekanan yang disebabkan oleh gaya-gaya yang terjadi pada dinding penahan ke tanah harus dipastikan lebih kecil dari daya dukung ijin tanah. Penentuan daya dukung ijin pada dasar dinding penahan/abutmen dilakukan seperti dalam perencanaan pondasi dangkal.

Penulangan Dinding Penahan Tanah

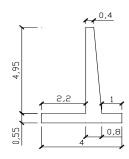
Beton bertulang adalah dimana dua jenis bahan yaitu baja tulang dan beton dipakai bersamaan dengan demikian prinsip-prinsip yang mengatur perencanaan struktur dari beton bertulang di dalam beberapa hal berbeda dengan prinsip-prinsip yang menggunakan satu macam bahan saja.

Banyak struktur dibuat dari beton bertulang yaitu antara lain : jembatan, gedung, dinding penahan tanah, terowongan, tangki, dan lain-lain. Beton bertulang adalah merupakan gabungan dari dua jenis bahan yaitu beton polos yang memiliki kekuatan tinggi akan tetapi kekuatan tarik yang rendah, dan batangan baja-baja yang ditanamkan di dalam beton dapat memberikan kekuatan tarik yang diperlukan.

METODOLOGI PENELITIAN

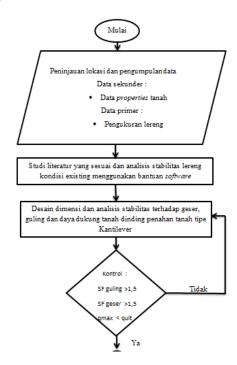

Lokasi Perencanaan

Perencanaan ini dilakukan di jalan Kemuning Lor Kecamatan Arjasa Kabupaten Jember.

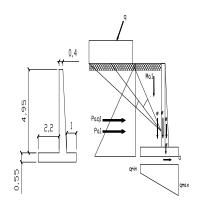

Data Parameter Tanah Timbunan Hasil Uji Laboratorium

No	Jenis Pemeriksaan	Tanah
1	Berat isi (gr/cm³)	2,02
2	Kohesi c (kg/cm³)	0,089
3	Sudut geser (°)	33,66

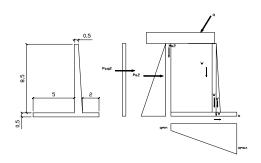
Pemodelan Lereng dan Dinding Penahan Tanah



Gambar 2. Timbunan tanah


Gambar 3. Penampang Dinding penahan tanah

Bagan Alir Perencanaan



HASIL DAN PEMBAHASAN

Gambar 4. Dinding penahan tanah 1

Dinding Penahan Tanah 1
SFgeser =
$$\frac{V \cdot f + c.B}{\Sigma^H}$$

= $\frac{339,800 \times 0,413 + 8,728 \times 4}{89,299}$
= 1,96 > 1,5 (aman)
SFguling = $\frac{\Sigma^{MW}}{\Sigma^{MGL}}$
= $\frac{835,732}{166,809}$
= 5,01 > 1,5 (aman)
 $\frac{166,809}{4}$
= $\frac{339,800}{4} \left(1 + \frac{6x(0,031)}{4}\right)$
= 88,954 kN/m² < q_a = 2607,964 kN/m² (aman)

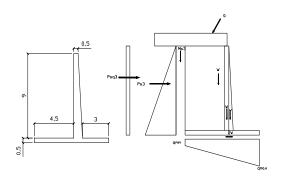
Gambar 5. Dinding penahan tanah 2

Dinding Penahan Tanah 2

SFgeser =
$$\frac{V.f + c.B}{\sum H}$$

= $\frac{1090,882 \times 0,413 + 8,728 \times 8}{364,068}$
= $1,64 > 1,5$ (aman)

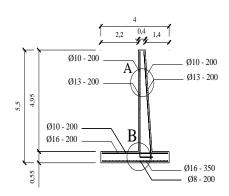
$$SFguling = \frac{\sum MW}{\sum MGL}$$


$$= \frac{5409,603}{1293,192}$$

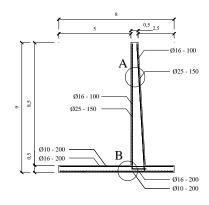
$$= 4,18 > 1,5 \quad (aman)$$

$$q_{maks} = \frac{1090,882}{8} \left(1 + \frac{6.x(0,22)}{8}\right)$$

$$= 159,527 \text{ kN/m}^2 < q_a$$


$$= 4427,684 \text{ kN/m}^2 \quad (aman)$$

Gambar 6. Dinding penahan tanah 3


Dinding Penahan Tanah 3
SFgeser =
$$\frac{V \cdot f + c \cdot B}{\Sigma H}$$

= $\frac{1066,264 \times 0,413 + 8,728 \times 8,5}{608,302}$
= 1,69 > 1,5 (aman)
SFguling = $\frac{\Sigma MW}{\Sigma MGL}$
= $\frac{6028,153}{2483,549}$
= 2,42 > 1,5 (aman)
Qmaks = $\frac{1066,264}{8,5} \left(1 + \frac{6 \times (0,92)}{8,5}\right)$
= 207,409 kN/m² < q_a = 4670,213 kN/m² (aman)

Penulangan Dinding Penahan Kantilever


Gambar 7. Dinding penahan tanah

Penulangan Dinding Penahan 1
Mutu beton (fc') = 30 MPa
Mutu tulangan (fy) = 400 Mpa
Penulangan lentur = D10-200
Penulangan Horizontal = D13-200
Design terhadap geser = D8-200
Design bagian tumit = D10-200
Design bagian ujung kaki = D16-350

Gambar 8. Dinding penahan tanah

Penulangan Dinding Penahan 2 Mutu beton (fc') = 30 MPa Mutu tulangan (fy) = 400 Mpa Penulangan lentur = D25-150 Penulangan Horizontal = D16-100 Design terhadap geser = D25-150 Design bagian tumit = D16-200 Design bagian ujung kaki = D16-200

Gambar 9. Dinding penahan tanah

Penulangan Dinding Penahan 3 Mutu beton (fc') = 30 MPa Mutu tulangan (fy) = 400 Mpa Penulangan lentur = D25-100 Penulangan Horizontal = D10-200 Design terhadap geser = D16-200 Design bagian tumit = D10-200 Design bagian ujung kaki = D10-200

KESIMPULAN DAN SARAN

Kesimpulan

Dari hasil analisis di perhitungan dapat disimpulkan beberapa hal mengenai analisis dinding penahan tanah yang berada pada lereng di jalan Kemuning Lor Kecamatan Arjasa Kabupaten Jember. Dapat disimpulkan sebagai berikut :

1. Nilai angka keamanan (SF)

Perhitungan sebelum adanya perkuatan : $SF = \frac{140,282}{1223,657} = 0,12$

Perhitungan sesudah adanya perkuatan :

Dinding Penahan Tanah 1:
 SFgeser = 1,96 > 1,5
 SFguling = 5,01 > 1,5
 SFdayadukung
 qmaks = 88,954 kN/m² < qa = 2607,964 kN/m²

Dinding Penahan Tanah 2:
 SFgeser = 1,64 > 1,5
 SFguling = 4,18 > 1,5
 SFdayadukung
 qmaks = 159,527 kN/m² < qa = 4427,684 kN/m²

Dinding Penahan Tanah 3:

SFgeser = 1,69 > 1,5

SFguling = 2,42 > 1,5

SFdayadukung

qmaks = 207,409 kN/m² < qa = 4670,213 kN/m²

Penulangan Dinding Kantilever

Dinding Penahan Tanah	1	2	3
Mutu beton (fc')	30 MPa	30 MPa	30 MPa
Mutu tulangan 400 Mpa	400 Mpa	400 MPa	400 MPa
Penulangan Lentur	D18-200	D13-200	D13-200
	D13-200	D25-150	D25-100
Penulangan	D8-200	D10-200	D10-200
Horizontal	D10-200	D16-100	D16-50
Design Terhadap	D8-200	D13-200	D13-200
Geser	D13-200	D25-150	D25-100
Design Bagian	D10-200	D10-200	D10-200
Tumit	D13-200	D16-200	D16-200
Design Bagian	D8-200	D10-200	D10-200
Ujung Kaki	D16-350	D16-200	D16-200

Saran

Hasil analisis dinding penahan tanah yang berada lereng di jalan Kemuning Lor Kecamatan Arjasa Kabupaten Jember. Dan hasil kontrol gayagaya dalam pada konstruksinya dengan menggunakan Geostudio 2007 kontrol gaya-gaya pada dinding penahan tanah dengan simulasi dinding kantilever. Maka disarankan hal-hal sebagai berikut:

- a. Perlu di evaluasi terhadap kekuatan tanahnya maupun kekuatan dinding penahan tanahnya.
- b. Supaya tercapainya angka keamanan (SF) terhadap geser dengan memperlebar alas dinding penahan.
- c. Supaya tercapainya angka keamanan (SF) terhadap guling dengan menambah tinggi perencanaan dinding penahan.
- d. Pemodelan selanjutnya dapat dilakukan dengan software geoteknik lain, seperti *Miraslope* dan STABB.
- e. Membandingkan dengan jenis perkuatan lain.

DAFTAR PUSTAKA

- Das, B. M. 1998. Mekanika Tanah Jilid 1, Erlangga, Jakarta.
- Das, B. M. 1998. Mekanika Tanah Jilid 2, Erlangga, Jakarta.
- Hardiyatmo. 2002. Teknik Pondasi I. Edisi Kedua, Beta Offset, Yogyakarta.
- Hardiyatmo. 2003. Teknik Pondasi II. Edisi Ketiga, Gadjah Mada University Press, Yogyakarta.
- Hardiyatmo. 2006. Mekanika Tanah I, Gadjah Mada University Press, Yogyakarta.
- Hardiyatmo. 2010. Teknik Pondasi II. Edisi Kelima, Gadjah Mada University Press, Yogyakarta.
- Indrawahjuni, Herlien. 2011. Mekanika Tanah II, Bargie Media, Malang.
- Prashant, Amit and Mousumi Mukerjee. 2010. Soil Nailing for Stabilization of Steep Slopes Near Railway Tracks. Indian Institute of Technology Kanpur.
- Santoso, Budi, Suprapto H., Suryadi HS. 1998. Mekanika Tanah Lanjut, Gunadarma, Jakarta.
- Sosrodarsono, Suryono, Nakazawa, Kazuto. 2000. Mekanika Tanah dan Teknik Pondasi, PT. Pradnya Paramita, Jakarta.

- Suryolelono, K. B, & Dip, H. E, 1994, "teknik pondasi bagian I (pondasi telapak dan dinding penahan tanah)". Universitas Gadjah Mada, Yogyakarta.
- Terzaghi, Karl dan Ralph B Peck. 1967. Mekanika Tanah Dalam Praktek Rekayasa. Edisi Kedua Jilid I, Penerbit Erlangga, Jakarta.