PERANCANGAN MESIN PEMBUAT MINUMAN KOPI YANG OTOMATIS DENGAN PENGUKURAN ANTROPOMETRI

Oktavianus Putra Bagus P

Program Studi Teknik Industri S.1, Institut Teknologi Nasional Malang **Email:** ¹oktavianusputra7@gmail.com

Abstraks : Perkembangan teknologi telah mendorong manusia untuk berusaha mengatasi segala permasalahan serta meringankan masalah yang ada seperti alat penyeduh minuman kopi, namun ada permasalahan yang terjadi yaitu pembuatan minuman kopi hitam yang membutuhkan waktu lama serta masih menggunakan mesin yang manual. Tujuan dalam pembuatan skripsi ini adalah untuk merancang dan membuat mesin minuman kopi dengan pengukuran antropometri serta merancang agar waktu yang dibutuhkan dalam membuat minuman kopi hitam tidak lama. Penulisan skripsi ini menggunakan metode antropometri dengan ukuran dimensi tubuh, menggunakan metode ini penulis mendapatkan hasil lebar bahu dijadikan untuk ukuran lebar mesin yaitu 30 cm, tinggi siku pada posisi berdiri digunakan untuk tinggi mesin yaitu 52 cm. Sedangkan dengan menggunakan metode *stopwatch time study didapat* waktu normal yang dihasilkan dengan mesin ini mencapai 1.03 menit/gelas sedangkan waktu baku yang dihasilkan adalah 1.11 menit/gelas.

Kata Kunci: Antropometri, Autodesk Inventor, Stopwatch Time Study.

PENDAHULUAN

Perkembangan teknologi ilmu pengetahuan telah mendorong manusia untuk berusaha mengatasi segala permasalahan yang ada disekitarnya serta meringankan pekerjaan yang ada seperti alat penyeduh kopi. Pada awal perkembangannya kopi hanya terbatas diproduksi dan dikonsumsi di Negara-negara Timur Tengah seperti Arab Saudi, tetapi sekarang meluas ke seluruh dunia dan banyak dikonsumsi di Eropa dan Amerika. Perkembangan kopi yang pesat membuat minuman ini sudah menjadi bagian dari kebiasaan dan budaya masyarakat pedesaan maupun perkotaan. Konsumsi kopi berbeda dengan konsumsi minuman lainnya, karena faktor ketenangan dan kefokusan yang diperoleh tanpa efek samping seperti minuman beralkohol.

Pada cafe-cafe yang menjadi tempat penelitian yang berada di kota Malang, permasalahan yang terjadi adalah dalam proses pembuatan kopi hitam yang cukup panjang prosesnya dan membutuhkan waktu yang cukup lama. Alat yang digunakan juga masih manual yang menyebabkan kinerja semakin lama dan membuat orderan lain

tidak dikerjakan dengan baik. Dalam perancangan mesin pembuat minuman kopi otomatis ini yang perlu dilakukan adalah harus mengetahui kriteria pembuatan kopi hitam yang benar. Kemudian mengembangkan dengan fasilitas yang memudahkan pengguna dan memilih model yang layak serta sesuai.

Antropometri berasal dari "anthro" yang memiliki arti manusia dan "metri" yang memiliki arti ukuran. Antropometri adalah sebuah studi tentang pengukuran tubuh dimensi manusia dari tulang, otot, dan jaringan adiposa atau lemak. Menurut (Wignjoesoebroto, 2010) antropometri adalah studi yang berkaitan pengukuran dimensi tubuh manusia. Bidang antropometri meliputi berbagai ukuran tubuh manusia seperti berat badan, posisi ketika berdiri, lingkar tubuh, panjang tungkal, dan sebagainya. Pengukuran antropometri tubuh manusia juga perlu dilakukan agar didapat rancangan mesin yang tepat dan sesuai dengan kebutuhan orang Indonesia.

Berdasarkan penelitian tentang tingkat kelelahan dengan menggunakan alat manual, hasil yang didapat dengan menggunakan kuisioner yang dibagi ke 30 karyawan pada masing masing cafe adalah sebanyak 21 orang (70%) menyatakan kelelahan yang amat sangat bila orderan ramai. Selebihnya sebanyak 9 orang (30%) menyatakan tidak terlalu kelelahan namun lengan tangan

terasa pegal.

Gambar 1. Grafik Tingkat Kelelahan

METODE

Autodesk Inventor 2012 merupakan salah satu software CADD (Computer Aided Drawing and Design) yang dikeluarkan oleh perusahaan asal Amerika bernama Autodesk. Sebagai software CADD Autodesk Inventor sangat sesuai diaplikasikan dalam pekerjaan perancangan komponen mekanik yang dirancang sifat parametric yang dimiliki software ini menjadikan mudah di edit dan di modifikasi. Autodesk Inventor 2012 adalah program pemodelan solid berbasis fitur parametric, artinya semua objek dan hubungan antar geometri dapat dimodifikasi kembali meski geometrinya sudah jadi tanpa mengulang lagi dari awal. Hal ini sangat memudahkan kita ketika sedang dalam proses desain suatu produk atau rancangan. Untuk membuat sketchnya terlebih dahulu atau mengimpor gambar 2D dari Autodesk Autocad. Setelah gambar atau 3D tersebut jadi, kita dapat membuat gambar kerjanya menggunakan fasilitas drawing (Ngadiyono: 2010).

Aspek-aspek ergonomi adalah suatu proses rancang bangun fasilitas kerja adalah merupakan suatu factor penting dalam menunjang peningkatan pelayanan jasa produksi (Noor Fitrihana : 2010). Perlunya

memperhatikan factor ergonomi dalam proses rancang bangun fasilitas pada decade sekarang ini adalah merupakan suatu yang tidak dapat ditunda lagi. Hal tersebut tidak akan terlepas dari pembahasan mengenai ukuran antropometri tubuh operator maupun penerapan data-data operatornya. Istilah antropometri berasal dari "antro" yang berarti manusia dan "metri" yang berarti ukuran. Secara definitive antrhopometri dapat dinyatakan sebagai suatu studi yang berkaitan dengan pengukuran dimensi tubuh manusia. Manusia pada umumnya memiliki bentuk, ukuran (tinggi, lebar, berat) yang dengan yang lainnya. satu Antropometri secara luas digunakan sebagai pertimbangan ergonomic dalam proses perancangan produk maupun system kerja yang akan memerlukan interaksi manusia. Data antropometri yang berhasil diperoleh diaplikasikan secara luas antara lain dalam hal:

- 1. Perancangan areal kerja
- 2. Perancangan peralatan kerja seperti mesin, equipment, perkakas.
- 3. Perancangan produk produk konsumtif seperti pakaian, meja, computer, dll.
- 4. Perancangan lingkungan kerja fisik.

Persentil adalah suatu nilai yang menyatakan bahwa presentase tertentu dari sekelompok orang yang dimensinya sama dengan atau lebih rendah dari nilai tersebut (Wignjsoebroto : 2010). Misalnya 95% populasi adalah sama dengan atau lebih rendah dari 95 persentil; 5% dari populasi berada sama dengan atau lebih rendah dari 5 persentil.

Pengukuran waktu kerja dengan jam henti (*Stop Watch Time Study*), metode ini terutama sekali baik diaplikasikan untuk pekerjaan-pekerjaan yang berlangsung singkat dan berulang-ulang. Dari hasil pengukuran maka akan diperoleh waktu baku untuk menyelesaikan suatu siklus pekerjaan, yang mana waktu ini akan dipergunakan sebagai standart penyelesaian pekerjaan bagi semua pekerja yang akan melaksanakan pekerjaan yang sama seperti itu (Wignjoesoebroto : 2010).

HASIL DAN PEMBAHASAN

Pengumpulan Data

Tabel 1. Hasil Pengamatan Waktu

Menggunakan Mesin Manual

No	Xi	Xi^2	No	Xi	Xi^2
responden.	(Menit)	(Menit)	responden.	(Menit)	(Menit)
1.	3	49	16.	3	36
2.	3	25	17.	4	49
3.	4	25	18.	4	25
4.	3	16	19.	4	25
5.	3	16	20.	3	16
6.	3	16	21.	3	16
7.	4	36	22.	4	16
8.	4	25	23.	4	25
9.	4	25	24.	4	36
10.	4	16	25.	4	36
11.	4	16	26.	4	25
12.	4	25	27.	3	25
13.	3	16	28.	4	16
14.	4	16	29.	4	16
15.	4	36	30.	4	25
Sumber	; Pen	gamatan	Σ□		
Langsung Pada Karyawan di 5			110	410	
<u>cafe</u>					

Tabel 2. Hasil Pengukuran Dimensi

Tubuh

	Tinggi Siku Pada Posisi Berdiri	Lebar Bahu
Sampel	(cm)	(cm)
1.	49	36
2.	44	44
3.	46	37
4.	48	41
5.	45	37
6.	51	46
7.	45	49
8.	49	39
9.	47	42
10.	53	44
13.	44	39
14.	46	45
15.	50	50
16.	49	43
17.	50	42
18.	51	38
19.	46	45
20.	46	39
21.	49	46
22.	45	44
23.	47	40
24.	50	41
25.	48	45
26.	53	38
27.	45	43
28.	47	48
29.	45	47
30.	50	42
$\sum \Box$	1338	1283

Sumber : Pengukuran langsung pada Tubuh Manusia

Pengolahan Data

Berdasarkan perhitungan secara manual menggunakan rumus yang telah tersedia pada gambar 2 didapat hasil waktu baku yaitu 4.64 menit/gelas sedangkan waktu normal didapatkan hasil 4.18 menit/gelas.

Setelah penulis mengumpulkan data pada 30 responden maka selanjutnya akan diolah dan menghasilkan data untuk melengkapi dalam perancangan mesin pembuat minuman kopi.

Tabel 3. Pengolahan Data

Antropometri Tinggi Siku

Pada Posisi Berdiri

No.	Xi (cm)	Xi ² (cm)	No.	Xi (cm)	Xi ² (cm)
1.	49	2401	16.	49	2401
2.	44	1936	17.	50	2500
3.	46	2116	18.	51	2601
4.	48	2304	19.	46	2116
5.	45	2025	20.	46	2116
6.	51	2601	21.	49	2401
7.	45	2025	22.	45	2025
8.	49	2401	23.	47	2209
9.	47	2209	24.	50	2500
10.	53	2809	25.	48	2304
11.	46	2116	26.	53	2809
12.	50	2500	27.	45	2025
13.	44	1936	28.	47	2209
14.	46	2401	29.	45	2025
15.	50	2500	30.	50	2500
			$\sum \Box$	1350	61414

Tabel 4. Pengolahan Data

Antropometri Lebar Bahu

		2			-
No.	Xi (cm)	Xi ² (cm)	No.	Xi (cm)	Xi ² (cm)
1.	36	1296	16.	43	1849
2.	44	1936	17.	42	1764
3.	37	1369	18.	38	1444
4.	41	1681	19.	45	2025
5.	37	1369	20.	39	1521
6.	46	2116	21.	46	2116
7.	49	2401	22.	44	1936
8.	39	1521	23.	40	1600
9.	42	1764	24.	41	1681
10.	44	1936	25.	45	2025
11.	49	2401	26.	38	1444
12.	44	1936	27.	43	1849
13.	39	1521	28.	48	2304
14.	45	2025	29.	47	2209
15.	40	1600	30.	42	1764
			\sum	1347	60741

Tes Keseragaman Data

1. Tinggi Siku Posisi Berdiri

$$\bar{x} = \frac{\Sigma x_i}{N} = \frac{1350}{30} = 45 \ cm$$

Standart Deviasi :
$$\sigma = \sqrt{\frac{N(\Sigma x i^2) - (\Sigma x i)^2}{N^2}}$$

$$= \sqrt{\frac{20(61414) - (1350)^2}{30^2}}$$

$$= \sqrt{\frac{1842420 - 1822500}{900}}$$

$$= 4,7 \text{ cm}$$

BKA =
$$\bar{x}$$
 + k (σ)
= 45 + 2 (4.7)
= 54.4 cm
BKB = \bar{x} - k (σ)

2. Lebar Bahu

$$\bar{x} = \frac{\Sigma x_i}{N} = \frac{1347}{30} = 44.9 \ cm$$

Standart Deviasi :
$$\sigma = \sqrt{\frac{N(\mathcal{E}xi^2) - (\mathcal{E}xi)^2}{N^2}}$$

$$= \sqrt{\frac{30(60741) - (1347)^2}{30^2}}$$

$$= \sqrt{\frac{1822230 - 1814409}{900}}$$

$$= 8.69 \text{ cm}$$

Tes Kecukupan Data

- 1. Tinggi Siku Pada Posisi Berdiri
 - N = 30
 - Tingkat Kepercayaan (k) = 2 = 95%
 - Tingkat Ketelitian (s) = 5%

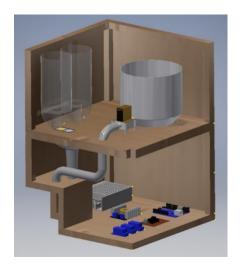
$$N' = \left[\frac{k/s\sqrt{N\sum x^2 - (\sum x)^2}}{\sum x} \right]^2$$

$$= \left[\frac{40\sqrt{1842420 - 1822500}}{1350} \right] \times \left[\frac{40\sqrt{1842420 - 1822500}}{1350} \right]$$

Gambar 2. Desain Mesin Baru

Tampak Samping

2. Lebar Bahu


Perhitungan Persentil

1. Tinggi Siku Pada Posisi Berdiri

Persentil 5% rumus
$$P = \overline{x} - 1,645 \sigma$$

 $P5 = 45 - 1.645 \times 4.7 = 37$
Persentil 95% rumus $P = \overline{x} + 1,645 \sigma$
 $P95 = 45 + 1.645 \times 4.7 = 52$

2. Lebar Bahu

Rancangan Mesin Pembuat Minuman Kopi

Perhitungan dengan Menggunakan Mesin Baru

Tabel 5. Pengamatan Waktu

Menggunakan Mesin baru

No.	Xi	Xi ²	No.	Xi	Xi ²
responden	(Menit)	(Menit)	responden	(Menit)	(Menit)
1.	0.91	0.8281	16.	0.91	0.8281
2.	0.83	0.6889	17.	0.88	0.7744
3.	0.81	0.6561	18.	0.85	0.7225
4.	0.91	0.8281	19.	0.93	0.8649
5.	0.83	0.6889	20.	0.83	0.6889
6.	0.85	0.7225	21.	0.91	0.8281
7.	0.88	0.7744	22.	0.95	0.9025
8.	0.91	0.8281	23.	0.91	0.8281
9.	0.93	0.8649	24.	0.9	0.81
10.	0.86	0.7396	25.	0.91	0.8281
11.	0.91	0.8281	26.	0.93	0.8649
12.	0.96	0.9216	27.	0.95	0.9025
13.	0.91	0.8281	28.	0.88	0.7744
14.	0.9	0.81	29.	0.91	0.8281
15.	0.95	0.9025	30.	0.93	0.8649
Sumber : Pengamatan Langsung Pada Mesin Baru		Σ□	26.94	24.2203	

Penentuan Rating Performance

Perhitungan Waktu Normal

Waktu Normal = Waktu (pengamatan ratarata) × *Performance Rating*

$$\mathbf{W}\mathbf{n} = \bar{x}$$
. Fp

$$= 0.807 \times 1.28 = 1.03 \text{ menit/gelas}$$

Penetapan Prosentase Kelonggaran (Allowance)

Untuk menentukan *allowance* diestimasikan bahwa kelonggaran yang dibutuhkan adalah :

Personal allowance (kebutuhan pribadi): 2%

Fatique allowance ditetapkan berdasaran faktor yang berpengaruh yaitu :

Tenaga yang dikeluarkan	= 1%
Sikap Kerja	= 1%
Gerakan kerja	= 1%
Kelelahan mata	= 0,5%
Keadaan temperatur tempat kerja	= 0%
Keadaan ruangan	= 0%
Keadaan lingkungan	= 0.5%

Hambatan-hambatan yang tak terhindarkan : 1,5%

Jadi total prosentase kelonggaran (*Allowance*): 7.5%

Perhitungan Waktu Baku

$$Wb = Wn \times \frac{100\%}{(100\% - Allowance)}$$

=1.03 × $\frac{100\%}{100\% - 7.5\%}$
= 1.11 menit/gelas

KESIMPULAN

Berdasarkan pengamatan secara langsung dengan menggunakan sistem westing house, maka faktor penyesuaian operator untuk melakukan aktifitasnya dalam proses pembuatan minuman kopi adalah sebagai berikut:

 Ketrampilan 	:	Excellent (B1)	=+0.11
2. Usaha	:	Excellent (B1)	=+0.10
3. Kondisi	:	Ideal (A)	=+0.06
4. Konsisten	:	Good (C)	=+0.01
		Total	=+0.28

P = 1 + RP (Rating Performance)

$$P = 1 + 0.28 = 1.28$$

Dimana: P = Faktor Penyesuaian

- P > 1 = Operator Bekerja Cepat
- P < 1 = Operator Bekerja Lambat
- P = 1 = Operator Bekerja Normal

Berdasarkan pengukuran antrhopometri lebar bahu dan tinggi siku pada posisi berdiri didapatkan rancangan untuk lebar alat menggunakan P5 = 30 cm, sedangkan untuk tinggi alat menggunakan P95 = 52 cm. Perbandingan waktu normal serta waktu baku pada alat lama dan baru terlihat sangat jauh perbedaannya seperti waktu normal pada alat lama yaitu 4.18 menit/gelas, sedangkan pada alat baru yaitu 1.03 menit/gelas. Begitu juga pada waktu baku, lama didapat pada alat hasil 4.64 menit/gelas, sedangkan pada alat baru menjadi 1.11 menit/gelas.

SARAN

Saran yang dapat saya berikan bagi penelitin lain yang hendak melakukan penelitian sejenis adalah agar dapat mengembangkan penelitian serta menambah kekurangan yang ada pada penelitian ini, sehingga makin memperkaya pengetahuan tentang merancang suatu alat dengan baik dan benar.

DAFTAR PUSTAKA

- Risma, Deni;. (2010). Prinsip Penting Ergonomi.
- Rosi, Nur Irfan;. (2017). Rancang Bangun Alat Pembuat Minuman Kopi Otomatis Menggunakan Konveyer. 11-12.
- Setiwan, Dedi;. (2008). Rancang Bangun Otomatisasi Proses Mixing Pada Sistem Otomatisasi Penyajian Kopi Susu Berbasis Mikrokontroller AT89S51.5.
- Triana, Novi Devi;. (2015). Analisis Ergonomi Untuk Redesain Kursi Kuliah. 12.
- Wignjsoebroto; Pewennari;. (2010).

 Persentil dan Antropometri dalam
 Ilmu Teknologi. 10.
- Ngadiyono. M.Pd., Y. (2010). Modul Autodesk Inventor. Universitas Negeri Yogyakarta : http://eprints.uny.ac.id
- Tarwaka. 2010. Ergonomi Industri Dasardasar Pengetahuan Ergonomi dan Aplikasi di Tempat Kerja. Surakarta: HARAPAN PRESS.
- Barnes, R. M. 1980. Motion and Time Study,

 Design an Measurement of Work.

 New YorK: John Willey & Sons
- Wignjoesoebroto, S. 2006. Ergonomika Studi Gerak dan Waktu: Teknik

- Analisis untuk Peningkatan Produktivitas Kerja. Guna Widya : Surabaya
- Sugiyono. 2011. *Statistika Untuk Penelitian*. Bandung: Alfabeta
- Augusty Ferdinand. 2010. Metode
 Penelitian Manajemen: Pedoman
 Penelitian untuk Skripsi, Tesis dan
 disertai Ilmu Manajemen, Semarang
 : Badan Penerbit Universitas
 Dipenogoro