PERENCANAAN KAPASITAS PRODUKSI MENGGUNAKAN METODE ROUGH CUT CAPACITY PLANNING (RCCP) PADA HOME INDUSTRI LOCA NUSA

Rexsy Hadinata Suwarso¹⁾, ST. Salmia L. A.²⁾, Thomas Priyasmanu³⁾

^{1,2,3)} Program Studi Teknik Industri, Fakultas Teknologi Industri, Institut Teknologi Nasional Malang Email: Rexsyhadinata@gmail.com

Abstrak, Persaingan ketat dalam dunia bisnis pada era pasar bebas saat ini, Perusahaan diharuskan untuk merencanakan kapasitas produksi untuk dapat memenuhi permintaan *customer* dengan tepat waktu. Penjadwalan induk produksi (MPS) merupakan salah satu upaya yang dapat ditempuh agar perusahaan tersebut mampu dalam merencanakan dan mengendalikan aktifitas produksinya. Untuk mengetahui kemampuan produksi suatu usaha pada setiap periode, pengukuran waktu kerja dapat digunakan untuk mengetahui waktu standart dalam menyelesaikan suatu aktifitas pekerjaan. Penelitian ini menggunakan metode *Forecasting* untuk merencanakan jumlah permintaan untuk merencanakan kapasitas produksi, Metode Perencanaan Kapasitas dibutuhkan untuk memenuhi perubahan permintaan produk berdasarkan kapasitas tersedia dan Metode RCCP untuk mengetahui kapasitas yang dimiliki pengusaha sudah mampu atau tidak dalam mengakomodasikan permintaan *customer*. Permintaan aktual pada UMKM Loca Nusa dilihat berdasarkan plot diagram adalah berpola *trend* dimana metode peramalan yang dapat digunakan berdasarkan jumlah kesalahan terkecil adalah metode peramalan Linier Regresi (*Linier Trend*), dengan nilai MAD sebesar 83,63, nilai MSE sebesar 11031.5 dan Nilai MAPE sebesar 18,81%. Jadwal Induk Produksi (Pcs) untuk bulan Agustus sampai Februari adalah 1074, 1350, 1464, 1599, 1736, 1871 dan 2008. Kapasitas yang dibutuhkan UMKM Loca Nusa jauh lebih besar dari jumlah kapasitas yang tersedia sehingga perencanaan produksi yang telah direncanakan masih belum layak.

Kata Kunci: Forecasting, Kapasitas, RCCP, Permintaan

PENDAHULUAN

Kopi merupakan salah satu komoditas hasil perkebunan yang sejak diperdagangkan salah satunya di Indonesia. Dengan meningkatnya permintaan global dan domestik dimana konsumsi domestik kopi di Indonesia dari tahun ke tahun yang semakin meningkat sehingga dibutuhkan investasi di sektor kopi di negara ini. (Sumber: International Coffee Organization, 2019). Berdasarkan data Kementerian Perdagangan, tren ekspor kopi Indonesia dalam lima tahun terakhir meningkat rata-rata 1,14% per tahun (Kementerian Perdagangan 2019). Selain itu, Kopi berperan penting dalam menyumbangkan hasil devisa Indonesia dalam sektor pertanian setelah minyak sawit, karet dan kakao. (Sumber: Badan Pusat Statistika, 2019).

Agar dapat bertahan ditengah persaingan yang semakin kompetitif pada era pasar bebas saat ini, pelaku industri diharuskan untuk memenuhi permintaan *customer* dengan merencanakan kapasitas produksi agar dapat memenuhi permintaan dengan tepat waktu. Perencanaan Kapasitas Produksi merupakan

salah satu bagian terpenting dalam sebuah industri. Sebuah perusahaan yang baik adalah perusahaan yang mampu merencanakan kapasitas produksi dalam suatu industri. Menurut Vincent (1988) dalam Sirait (2013), Keberhasilan perencanaan dan pengendalian *manufacturing* membutuhkan perencanaan kapasitas yang efektif agar mampu memenuhi jadwal produksi yang ditetapkan.

Tabel 1 Data Permintaan Produk Kopi Dampit Periode Januari – Juli 2020

No.	Bulan	Permintaan (Pcs)
1	Januari	280
2	Februari	263
3	Maret	416
4	April	472
5	Mei	417
6	Juni	819
7	Juli	969

(Sumber: UMKM Loca Nusa)

• Forecasting (Peramalan)

Metode ini berguna untuk memperkirakan suatu permintaan agar dapat menentukan perencanaan permintaan. Metode peramalan yang digunakan meliputi:

- Moving Average

Dengan mengambil sekelompok nilai pengamatan, mencari nilai rata-rata tersebut sebagai ramalan untuk periode yang akan datang:

 $\hat{\mathbf{Y}} = \frac{\sum Permintaan periode sebelumnya}{\sum Permintaan periode sebelumnya}$

- Linier Regresi (*Linier Trend*)

Untuk permasalahan dengan dua variabel yang digunakan, yaitu variabel x dan y yang diasumsikan memiliki kaitan satu sama lain dan bersifat linier. Rumus perhitungan metode Regresi Linier yaitu sebagai berikut:

 $\bar{x} = \frac{\sum x}{n}$ $\bar{y} = \frac{\sum y}{n}$ $a = \frac{\sum y - b \sum x}{n}$ $b = \frac{n \cdot \sum xy - \sum x \sum y}{n \cdot \sum x^2 - (\sum x^2)}$ $\hat{y} = a + bx$

- Single Exponensial Smoothing dengan α = 0.5

Untuk meramalkan pola data historis yang fluktuasinya tidak teratur yang memiliki rumus sebagai berikut:

$$S'_t = \alpha p \times X_t + (1 - \alpha p) \times S'_{t-1}$$

Double Exponensial Smoothing
 Digunakan untuk meramalkan pola data trend dengan rumus sebagai berikut:

$$S''_t = \alpha p \times X_t + (1 - \alpha p) \times S''_{t-1}$$

• Perencanaan Kapasitas (MPS)

Digunakan untuk menentukan tingkat kapasitas yang dibutuhkan untuk memenuhi perubahan permintaan terhadap setiap produknya yang berdasarkan kapasitas yang tersedia. MPS membutuhkan input utama (Gaspersz, 2016), sebagai berikut:

- 1. Data Permintaan Total
- 2. Inventori Aktual
- 3. Rencana Produksi
- 4. Data Perencanaan
- 5. Informasi dari RCCP berupa kebutuhan kapasitas

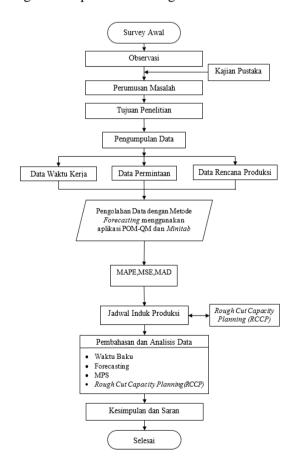
UMKM Loca Nusa berada di Kota Malang, Jawa Timur merupakan salah satu industri rumahan yang bergerak dalam produksi Kopi Dampit. UMKM Loca Nusa terus berupaya untuk memuaskan customer dengan melakukan produksi yang kemudian disimpan sebagai persediaan (make to stock). UMKM Loca Nusa di masa pandemi COVID-19 seperti saat ini tidak terpengaruh terhadap jumlah permintaan kopi dikarenakan UMKM tersebut telah dialihkan melalui Online Shop namun permasalahan dalam hal mengatasi permintaan yang cenderung fluktuatif seperti yang terlihat pada Tabel 1 dimana pada bulan Maret hingga bulan Juli yang menyebabkan besarnya selisih antara rencana jumlah produksi dengan jumlah permintaan, sehingga owner kesulitan dalam mengatur kapasitas produksi yang efektif. UMKM Loca Nusa memerlukan perencanaan kembali permintaan menggunakan metode peramalan untuk merencanakan kapasitas produksi yang tepat agar dapat memenuhi permintaan untuk periode selanjutnya. Tujuan dari penelitian ini adalah untuk merencanakan Jadwal Induk Produksi dan mengetahui kemampuan kapasitas produksi pada UMKM Loca Nusa.

METODE

Jenis Penelitian yang digunakan dalam penelitian ini adalah penelitian deskriptif dengan pendekatan kuantitatif dengan menggunakan data permintaan aktual pada produk kopi yang dibuat secara tersusun. Teknik dalam mengumpulkan data dilakukan dengan melakukan survei awal dan observasi, wawancara dengan *owner* dan mengukur data waktu kerja terhadap tenaga kerja yang berada di lokasi. Data yang telah terkumpul kemudian diolah menggunakan metode yang telah dipilih sebelumnya, antara lain yaitu:

• Pengukuran Waktu Kerja

Metode ini berguna untuk menetapkan keseimbangan antara kegiatan manusia atau aktifitas kerja dengan unit ouput yang dihasilkan (Wignjosoebroto, 2008). Teknik yang digunakan dalam mengukur waktu kerja dalam penelitian ini menggunakan metode jam henti (stopwatch time study):


- 1. Uji Kecukupan Data
- 2. Uji Keseragaman Data

Vol. 4 No. 1 (2021)

RCCP

Pada dasarnya RCCP didefinisikan sebagai proses konversi dari rencana produksi dan/atau MPS kedalam kebutuhan kapasitas yang berkaitan dengan sumber daya kritis seperti: tenaga kerja, mesin dan peralatan, gudang, kapasitas kapasitas pemasok material, dan sumber dava keuangan (Gaspersz, 2016). Dalam hal ini terdapat 3 macam teknik dalam perhitungan RCCP yaitu Capacity Planning Using Overall Factor Approach (CPOF), Bill of Labour Approach (BOLA), Resource Profile Approach (RPA). Dalam penelitian menggunakan teknik **BOLA** menggunakan data yang rinci mengenai waktu baku setiap produk pada setiap aktifitas kerja.

Tahap penelitian ini terangkum pada diagram alir penelitian sebagai berikut:

Gambar 1 Diagram Alir Penelitian

HASIL DAN PEMBAHASAN Pengukuran Waktu Kerja

Tabel 2 Data Hasil Pengukuran Waktu Kerja

Aktifi tas Kerja	W _s (detik)	PR (%)	W_n (detik)	All.	W _b (detik/ pcs)	W _b (Jam/P cs)
1	57,9	106	61,374	12%	70	0,0194
2	40,3	105	42,315	12%	48	0,0133
3	108,4	103	111,652	12%	127	0,0352
4	223	105	234,15	12%	266	0,0739
5	147,6	106	156,456	12%	178	0,0494

(Sumber: Hasil Pengolahan Data)

Waktu Normal

Perhitungan Waktu normal dengan mengalihkan waktu pengamatan rata rata (waktu siklus) dengan nilai performance rating. Nilai dari *performance* rating diharapkan waktu proses dapat dinormalkan. Berikut contoh perhitungan waktu normal untuk proses menimbang:

Performance Rating = 1 + Westing HouseRating

$$W_n = W_s \times Performance\ rating$$

 $W_n = 57.9 \times 106\% = 61.374\ detik/Pcs$

Waktu Baku

Penentuan Waktu Baku untuk menentukan target produksi yang didapatkan dengan mengalihkan waktu normal dengan kelonggaran (Allowance). Berikut merupakan contoh perhitungan waktu baku untuk proses menimbang:

$$W_b = W_n \times \frac{100\%}{100\% - \% \, Allowance}$$
 $W_b = 61,374 \times \frac{100\%}{100\% - 12\%}$
 $W_b = 69,7432 \approx 70 \, \text{detik/Pcs}$
 $W_b \, (\text{dalam jam}) = 70/3600 = 0,0194 \, \text{jam/pcs}$

(Sumber: Pengolahan Data *Minitab*)

Gambar 2 Waktu Baku

E-ISSN: 2614-8382 Jurnal Valtech (Jurnal Mahasiswa Teknik Industri)

Vol. 4 No. 1 (2021)

Dilihat dari plot diagram pada Gambar 2 yang berpola *Trend*, sehingga untuk pengolahan data permintaan kopi UMKM Loca Nusa Periode Januari 2020 sampai dengan Juli 2020 menggunakan metode peramalan Linier Regresi (*Linier Trend*), *Moving Average* dan *Single Exponensial Smoothing*, *Double Exponensial Smoothing*.

Tabel 3 Perbandingan Akurasi Peramalan

No.	Metode	MAD	MSE	MAPE
				(%)
1.	Moving	524,5	275100,	54.1
	Average		3	
2.	Linier	83.63	11031.5	18,81
	Regresi			
	(Linier			
	Trend)			
3.	Single	175,4	49047.5	32,8
	Exponensi			
	al			
	Smoothing			
	$(\alpha = 0,5)$			
4.	Double	116,7	22342.3	22
	Exponensi			
	al			
	Smoothing			

(Sumber: Hasil Perhitungan menggunakan *Minitab* dan *POM-QM*)

Berikut hasil dari perhitungan menggunakan *software POM-QM*:

Measure	Value	Future Period	Forecast
Error Measures		8	973.714
Bias (Mean Error)	0	9	1087.286
MAD (Mean Absolute Deviation)	83.633	10	1200.857
MSE (Mean Squared Error)	11031.51	11	1314.428
Standard Error (denom=n-2=5)	124.274	12	1428
MAPE (Mean Absolute Percent Error)	18.81%	13	1541.571
Regression line		14	1655.143
Demand(y) = 65.143		15	1768.714
+ 113.571 * Time(x)		16	1882.286
Statistics		17	1995.857
Correlation coefficient	.908	18	2109.428
Coefficient of determination (r^2)	.824	19	2223

(Sumber: Software POM-QM)

Gambar 3 Data Result

Jadwal Induk Produksi (MPS)

Suatu rencana produksi yang menggambarkan hubungan antar kuantitas tiap jenis produk pada suatu periode tertentu.

Tabel 4 Perkiraan Permintaan Dalam Satuan Agregat

			Hasil
		Jumlah	Perkiraan
No.	Bulan	(Satuan	Permintaan
		Agregat)	(Satuan
			Agregat)
1	Agustus	974-121	853
2	September	1087	1087
3	Oktober	1201	1201
4	November	1314	1314
5	Desember	1428	1428
6	Januari	1542	1542
7	Februari	1655	1655

(Sumber: Hasil Pengolahan Data)

Tabel 5 Hasil perhitungan rencana kebutuhan produksi agregat (Pcs)

Bulan	Inventori Awal (I)	Perkiraan Permintaan (II)	Persediaan Pengaman (III) (II*20%)	Kebutuhan Produksi (IV) (II+III-I)	Inventori Akhir (V) (I+IV-II)	Perkiraan Permintaan (II)
Agustus	121	853	171	903	171	853
September	171	1087	217	1133	217	1087
Oktober	217	1201	240	1224	240	1201
November	240	1314	263	1337	263	1314
Desember	263	1428	286	1451	286	1428
Januari	286	1542	308	1564	308	1542
Februari	308	1655	331	1678	331	1655
Total	1606	9080	1816	9290	1816	9080

(Sumber: Hasil Pengolahan Data)

Berikut salah satu perhitungan berdasar tabel 5: $Safety\ stock\ (SS) = 20\% \times permintaan (forecast)$ $= 0.2 \times 853 = 171 \text{ unit}$

Keb. prod = Permintaan + SS - inv.awal
=
$$853 + 171 - 121 = 903$$

Inv. akhir = Inv. awal + keb.prod - permintaan
=
$$121 + 903 - 853 = 171$$
 unit

$$Rata^{2}permintaan = \frac{Tot.permintaan (forecast)}{\sum Periode}$$
$$= 9080 / 7 = 1297 pcs$$

$$\sum$$
 HK = HK × Jumlah Periode
= $16 \times 7 = 112$ hari

$$\frac{\sum \text{Tenaga Kerja (TK)}}{W_b (\sum \text{Kebutuhan Produksi-Inv.Awal})} = \frac{(\sum HK \times JK)}{(112 \times 7)} = 2,23 \approx 2 \text{ orang}$$

Regular Workhour (RW) = HK
$$\times$$
 Jam Kerja
= $16 \times 7 = 112$ jam

Vol. 4 No. 1 (2021)

$$\begin{aligned} \textit{Regular Production Time} &= RW \times TK \\ &= 2 \times 112 = 224 \; Jam \end{aligned}$$

$$= 2 \times 112 = 224 \text{ Jam}$$
 Inver
Hour Demand = Forecast \times W_b (Pcs/Jam)

Inventory Hour =
$$RPT$$
 - Hour Demand
= $224 - 163.18 = 60.82 Ian$

= 224 - 163,18 = 60,82 Jam

 $= 853 \times 0.1913 = 163,18$ jam

Tabel 6 Hasil perhitungan produksi (Jam)

No.	Bulan	RPT	Forecast	Forecast (Hour Demand)	Inventori (Jam)	Inventori Awal (jam)	Inventori Akhir (Jam)
1	Agustus	224	903	172,74	51,26	0	51,26
2	September	224	1133	216,74	7,26	51,26	58,5132
3	Oktober	224	1224	234,15	-10,15	58,5132	48,362
4	November	224	1337	255,77	-31,77	48,362	16,5939
5	Desember	224	1451	277,58	-53,58	16,5939	-36,982
6	Januari	224	1564	299,19	-75,19	-36,982	-112,18
7	Februari	224	1678	321	-97	-112,18	-209,18

(Sumber: Hasil Pengolahan Data)

Tabel 7 Penjadwalan Induk Produksi (MPS)

Kopi (Pcs)				2021				
Periode	July	Agt	Sep	Okt	Nov	Des	Jan	Feb
Forecast	860	853	1087	1201	1315	1428	1542	1655
Actual Demand	969							
MPS	1051	903	1133	1224	1337	1451	1564	1678
Projected Available Balance (PAB)	121	171	217	240	262	285	307	330
Planned Order	1172	1074	1350	1464	1599	1736	1871	2008

(Sumber: Hasil Pengolahan Data)

Rough Cut Capacity Planning

RCCP menentukan apakah sumber daya yang direncanakan cukup untuk melaksanakan MPS. RCCP yang digunakan menggunakan teknik BOLA (Bill Of Labor Approach). Berikut merupakan Tabel Jadwal Induk Produksi yang dibuat berdasarkan Planned Order:

Tabel 8 Data Hasil Pengukuran Waktu Kerja

MPS	Agt	Sep	Okt	Nov	Des	Jan	Feb
Kopi	1074	1350	1464	1599	1736	1871	2008

(Sumber: Hasil Pengolahan Data)

1) Kapasitas yang tersedia (Capacity Available)

Cara menghitung kapasitas tersedia yaitu dengan cara mengkalikan MPS dengan Waktu Proses (Waktu Baku) dalam Jam. Berikut contoh Hasil Perhitungannya:

Kapasitas Tersedia (Menimbang)

 $= 1050 \times 0.0194 = 20.37 \text{ Jam}$

Kapasitas Total yang Tersedia

 $= 1050 \times 0.1913 = 200.8 \text{ Jam}$

Berikut Tabel Kapasitas Tersedia untuk setiap Periode dan Setiap Proses:

Tabel 9 Kapasitas Tersedia

	Agt	Sep	Okt	Nov	Des	Jan	Feb
Aktifitas Kerja	1050	1050	782	476	223	136	329
Menimbang	20,37	20,37	15,17	9,23	4,33	2,64	6,38
Press & Inpeksi	13,97	13,97	10,4	6,33	2,97	1,81	4,38
Pemasangan Bubble Wrap	36,96	36,96	27,53	16,76	7,85	4,79	11,58
Pengukuran dan Pemotongan Kardus	77,6	77,6	57,79	35,18	16,48	10,05	24,31
Finishing	51,87	51,87	38,63	23,51	11,02	6,72	16,25
Kapasitas Total yang Tersedia	200,9	200,9	149,6	91,1	42,7	26	62,9

(Sumber: Hasil Pengolahan Data)

2) Kapasitas yang dibutuhkan (*Capacity Requirement*)

Cara menghitung kapasitas yang dibutuhkan yaitu dengan cara mengkalikan MPS dengan Waktu Proses (Waktu Baku) dalam Jam. Berikut contoh Hasil Perhitungannya : Kapasitas dibutuhkan (Menimbang) = $1074 \times 0.0194 = 20.84$ Jam Kapasitas Total yang dibutuhkan = $1074 \times 0.1913 = 205.5$ Jam

Tabel 10 Kapasitas yang dibutuhkan

	Agt	Sep	Okt	Nov	Des	Jan	Feb
Aktifitas Kerja	1074	1350	1464	1599	1736	1871	2008
Menimbang	20,84	26,19	28,4	31,02	33,68	36,3	38,96
Press & Inpeksi	14,28	17,96	19,47	21,27	23,09	24,88	26,71
Pemasangan Bubble Wrap	37,91	47.66	51,68	56,44	61,28	66,05	70,89
Pengukuran dan Pemotongan Kardus	79,37	99,77	108,19	118,17	128,29	138,27	148,39
Finishing	53,06	66,69	72,32	78,99	85,76	92,43	99,20
Kapasitas Total yang dibutuhkan	205,5	258,3	280,1	305,9	332,1	357,9	384,1

(Sumber: Hasil Pengolahan Data)

3) Uji kelayakan kapasitas

Dilakukan dengan membandingkan kapasitas yang tersedia dengan kapasitas yang dibutuhkan yang dinyatakan dengan % LC. Stasiun kerja mengalami kekurangan kapasitas jika % LC bernilai negatif.

Demikian sebaliknya, stasiun kerja dikatakan mengalami kelebihan kapasitas apabila % LC bernilai positif.

Berikut contoh perhitungannya:

% LC =
$$\frac{\text{Kap.tersedia - Kap.dibutuhkan}}{\text{Kap.Tersedia}} \times 100\%$$

% LC_{Agt} (1) = $\frac{20,37 - 20,84}{20,37} \times 100\% = -2\%$
% LC_{Agt} = $\frac{200,9 - 205.5}{200,9} \times 100\% = -2\%$

Tabel 11 Perbandingan Kapasitas % LC pada setiap Proses

	Agt	Sep	Okt	Nov	Des	Jan	Feb
Menimbang (1)	-2%	-29%	-87%	-236%	-679%	-1276%	-510%
Press & Inpeksi (2)	-2%	-29%	-87%	-236%	-679%	-1275%	-510%
Pemasangan Bubble Wrap (3)	-3%	-29%	-88%	-237%	-681%	-1280%	-512%
Pengukuran dan Pemotongan Kardus (4)	-2%	-29%	-87%	-236%	-678%	-1276%	-510%
Finishing (5)	-2%	-29%	-87%	-236%	-678%	-1276%	-510%

(Sumber: Hasil Pengolahan Data)

Tabel 12 Perbandingan Kapasitas Total dalam Bulan

Bulan	Capacity Available (Jam)	Capacity Requirement (Jam)	% LC
Agustus	200.9	205.5	-2
September	200.9	258.3	-29
Oktober	149.6	280.1	-87
November	91.1	305.9	-236
Desember	42.7	332.1	-678
Januari	26	357.9	-1277
Februari	62.9	384.1	-511

(Sumber: Hasil Pengolahan Data)

KESIMPULAN DAN SARAN Kesimpulan

Dari hasil penelitian yang dilakukan, maka dapat ditarik kesimpulan yaitu:

- 1. Permintaan aktual pada UMKM Loca Nusa dilihat berdasarkan plot diagram adalah berpola *trend*, dimana pada pola *trend* metode peramalan yang dapat digunakan dan memiliki jumlah kesalahan terkecil adalah metode peramalan Linier Regresi (*Linier Trend*), dengan nilai MAD sebesar 83,63, nilai MSE sebesar 11031.5 dan Nilai MAPE sebesar 18,81% dengan Perkiraan permintaan Kopi pada 7 bulan ke depan yaitu bulan Agustus hingga Februari adalah 974 Pcs, 1087 Pcs, 1201 Pcs, 1314 Pcs, 1428 Pcs, 1542 Pcs, dan 1655 Pcs.
- 2. Jadwal Induk Produksi yang telah ditentukan pada UMKM Loca Nusa adalah sebagai berikut:
 - Pada bulan Agustus sebanyak 1074 Pcs
 - Pada bulan September sebanyak 1350
 Pcs
 - Pada bulan Oktober sebanyak 1464 Pcs
 - Pada bulan November sebanyak 1599 Pcs
 - Pada bulan Desember sebanyak 1736 Pcs
 - Pada bulan Januari sebanyak 1871 Pcs
 - Pada bulan Februari sebanyak 2008 Pcs
- 3. Pada penyusunan Jadwal Induk Produksi yang telah dikonversikan oleh RCCP, bahwa perencanaan produksi yang telah direncanakan tidak layak dikarenakan semua stasiun kerja menghasilkan nilai negatif pada setiap proses dan periode mulai dari proses menimbang sampai *finishing* periode Agustus 2020 Februari 2021 dimana kemampuan kapasitas produksi UMKM Loca Nusa saat ini adalah 201,1 Jam/Bulan sedangkan kapasitas yang dibutuhkan adalah sebesar 384.1 Jam. Yang

berarti hasil tersebut menunjukkan bahwa jumlah kapasitas yang dibutuhkan jauh lebih besar dari jumlah kapasitas yang tersedia pada perusahaan, sehingga menghambat berjalannya proses produksi, maka perlu adanya penambahan waktu kerja berupa waktu lembur maupun hari kerja.

Saran

Adapun saran yang dapat diberikan kepada UMKM Loca Nusa, antara lain:

- 1. UMKM Loca Nusa perlu merevisi Jadwal Induk Produksi (MPS) atau perlu menambahkan Tenaga Kerja maupun waktu lembur (*Overtime*).
- Untuk penelitian selanjutnya diharapkan untuk melakukan penelitian dengan pendekatan Kualitas dikarenakan perlu adanya pengendalian kualitas pada UMKM Loca Nusa.

DAFTAR PUSTAKA

- Abbas, S. 2018. Implementasi Jadwal Induk Produksi pada Pembuatan Produk Kaos di CV. Succes Makmur Comoditi Lawang-Malang. Jurnal Valtech, 1(1), 60-64.
- Ardiansyah, A. 2017. Analisis Kelayakan Kapasitas Produksi dengan Metode RCCP (Studi Kasus PT. Sewangi Sejati Luhur). Jurnal Surya Teknika, 5(01), 49-54.
- Fogarty, D. W., Blackstone, J. H., & Hoffman, T. R. (2009). *Production & Inventory Management. 3th ed.* South-Western Publishing Co., Ohio.
- Gaspersz, V. 2012. *All In One: Production and Inventori Management*. Vinchristo Publication, Jakarta.
- Ginting, R. 2007. *Sistem Produksi*. Graha Ilmu, Yogyakarta.

- Heizer, Jay dan Render, Barry. 2016. *Manajemen Operasi*. Edisi 11. Salemba Empat, Jakarta.
- Intani, A. E. 2017. Design for Manufacturing (DFM) untuk Meminimasi Biaya Produksi dan Kualitas (Studi Kasus Pallet Box Fabrication Section PT Saptaindra Sejati). Operations Excellence, 9(2), 124-139.
- Junaedi, Didi. 2018. Analisis perancangan kerja dan ergonomi: buku ini digunakan untuk praktikum bagi mahasiswa Teknik Industri. Pustaka Mandiri, Tangerang.
- Kementrian Perdagangan. 2019. *Inilah Negara Tujuan dengan Nilai Ekspor Kopi Terbesar Indonesia Tahun 2018*.
 Databoks Katadata, Jakarta.
- Kerlinger, Fred N. 2010. *Asas-asas Penelitian*. MTD Training, Jakarta.
- Lima Negara Produsen Kopi Terbesar di Dunia, [Online], (https://www.indonesiainvestments.com/id/bisnis/komoditas/ko pi/item186, diakses tanggal 3 Oktober 2020)
- Makridakis, S., Wheelwright, S. C., & McGee, V. E. 2010. *Metode dan aplikasi peramalan*. Erlangga, Jakarta.
- Niebel, B.& Freivald, A. 2014. *Methods Standards dan Work Design*. 10th ed. McGraw-Hill Company, USA.
- Rasbina, A., Sinulingga, S., & Siregar, I. 2013. Perencanaan Jadwal Induk Produksi

- pada PT. XYZ. E-Jurnal Teknik Industri FT USU, 2(1), 54-57.
- Rivero, M. D., & Hidayat, S. 2019. Analisis Permintaan Pasar dan Perencanaan JIP menggunakan Metode Forecasting dan RCCP di CV. Pratama Konveksi. IENACO (Industrial Engineering National Conference). 7 2019.
- Setiabudi, Y., Afma, V. M., & Irwan, H. 2019.

 Perencanaan Kapasitas Produksi ATV12

 dengan Menggunakan Metode Rough
 Cut Capacity Planning (RCCP) Untuk
 Mengetahui Titik Optimasi Produksi
 (Studi Kasus di PT Schneider Electric
 Manufacturing Batam). PROFISIENSI,
 6(2).
- Sirait, M. E., Sinulingga, S., & Ishak, A. 2013.

 Perencanaan Kebutuhan Kapasitas
 (Rough Cut Capacity Planning) Industri
 Pengolahan Peralatan Rumah Tangga
 Di PT. X. Jurnal Teknik Industri USU,
 2(2), 219339.
- Ulfah, H. S. 2015. Perencanaan Produksi Hirarkis Multi Produk Untuk Industri Farmasi Dengan Pendekatan Kombinasi Strategi Make-To-Stock & Make-To-Order: Studi Kasus Produk Kapsul Dan Tablet PT. Indofarma (Persero), Tbk.
- Wignjosoebroto, Sritomo. 2008. *Ergonomi, Studi Gerak dan Waktu*. Guna Widya, Jakarta.