Pengenalan Pola Daun untuk Membedakan Tanaman Padi dan Gulma Menggunakan Metode Principal Components Analysis (PCA) dan Extreme Learning Machine (ELM)

  • Ahmad Izzuddin Universitas Panca Marga Probolinggo
  • M. Rizal Wahyudi Universitas Panca Marga Probolinggo
Keywords: Padi, Gulma, Pengenalan Pola, Principal Component Analysis, Extreme Learning Machine

Abstract

Perkembangan ilmu pengetahuan serta pesatnya teknologi memberikan banyak manfaat bagi manusia dalam menjalankan aktifitasnya. Pemanfaatan ilmu pengetahuan dan teknologi tersebut di berbagai bidang termasuk di bidang pertanian. Pengembangan potensi pertanian suatu daerah dapat dioptimalkan melalui perkembangan ilmu pengetahuan dan teknologi itu sendiri. Salah satunya dengan pengenalan pola citra digital. Pengenalan pola bertujuan menentukan kelompok atau kategori pola berdasarkan ciri-ciri yang dimiliki oleh pola tersebut. Dengan kata lain, pengenalan pola membedakan suatu objek dengan objek lain. Dengan menggunakan metode ektraksi ciri Principal Component Analysis dan metode klasifikasi Extreme Learning Machine penulis melakukan penelitian untuk membedakan tanaman padi dan tanaman gulma. Implementasi PCA
dan ELM mampu membedakan tanaman gulma dengan padi (Oryza sativa L) dalam hal ini gulma yang digunakan adalah jawan (Echinochloa cruss-galli) dan kremah (Alternanthera sessilis). Berdasarkan hasil pengujian yang dilakukan 8 kali running dengan merubah jumlah hidden neuron
diperoleh nilai akurasi paling tinggi sebesar 91,67 % dengan menggunakan 10, 15, 30, 35, 40 hidden neuron, sedangkan untuk nilai akurasi paling rendah sebesar 58% dengan jumlah hidden neuron 5. Waktu yang dibutuhkan ELM untuk melakukan pelatihan dan pengujian sangat singkat
0.374 detik dan 0.500 detik pengukuran dilakukan dimulai dari running program sampai proses running program selesai.

Downloads

Download data is not yet available.
Published
2020-03-12
How to Cite
Ahmad Izzuddin, & M. Rizal Wahyudi. (2020). Pengenalan Pola Daun untuk Membedakan Tanaman Padi dan Gulma Menggunakan Metode Principal Components Analysis (PCA) dan Extreme Learning Machine (ELM) . ALINIER: Journal of Artificial Intelligence & Applications, 1(1), 44-51. https://doi.org/10.36040/alinier.v1i1.2521